Affordable Access

Hepadnavirus assembly and reverse transcription require a multi-component chaperone complex which is incorporated into nucleocapsids.

Authors
Publication Date
Source
PMC
Keywords
  • Research Article
Disciplines
  • Biology
  • Medicine

Abstract

Assembly of hepadnaviruses depends on the formation of a ribonucleoprotein (RNP) complex comprising the viral polymerase polypeptide and an RNA segment, epsilon, present on pregenomic RNA. This interaction, in turn, activates the reverse transcription reaction, which is primed by a tyrosine residue on the polymerase. We have shown recently that the formation of this RNP complex in an avian hepadnavirus, the duck hepatitis B virus, depends on cellular factors that include the heat shock protein 90 (Hsp90). We now report that RNP formation also requires ATP hydrolysis and the function of p23, a recently identified chaperone partner for Hsp90. Furthermore, we also provide evidence that the chaperone complex is incorporated into the viral nucleocapsids in a polymerase-dependent reaction. Based on these findings, we propose a model for hepadnavirus assembly and priming of viral DNA synthesis where a dynamic, energy-driven process, mediated by a multi-component chaperone complex consisting of Hsp90, p23 and, potentially, additional factors, maintains the reverse transcriptase in a specific conformation that is competent for RNA packaging and protein priming of viral DNA synthesis.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments
F