Affordable Access

Publisher Website

Optimizing particle size for targeting diseased microvasculature: from experiments to artificial neural networks

Authors
Journal
International Journal of Nanomedicine
1176-9114
Publisher
Dove Medical Press
Publication Date
Identifiers
DOI: 10.2147/ijn.s20283
Keywords
  • Original Research
Disciplines
  • Computer Science
  • Medicine

Abstract

Background Nanoparticles with different sizes, shapes, and surface properties are being developed for the early diagnosis, imaging, and treatment of a range of diseases. Identifying the optimal configuration that maximizes nanoparticle accumulation at the diseased site is of vital importance. In this work, using a parallel plate flow chamber apparatus, it is demonstrated that an optimal particle diameter (dopt) exists for which the number (ns) of nanoparticles adhering to the vessel walls is maximized. Such a diameter depends on the wall shear rate (S). Artificial neural networks are proposed as a tool to predict ns as a function of S and particle diameter (d), from which to eventually derive dopt. Artificial neural networks are trained using data from flow chamber experiments. Two networks are used, ie, ANN231 and ANN2321, exhibiting an accurate prediction for ns and its complex functional dependence on d and S. This demonstrates that artificial neural networks can be used effectively to minimize the number of experiments needed without compromising the accuracy of the study. A similar procedure could potentially be used equally effectively for in vivo analysis.

There are no comments yet on this publication. Be the first to share your thoughts.