Affordable Access

Publisher Website

Growth of n-type γ-CuCl with improved carrier concentration by pulsed DC sputtering: Structural, electronic and UV emission properties

Authors
Journal
Thin Solid Films
0040-6090
Publisher
Elsevier
Publication Date
Volume
519
Issue
18
Identifiers
DOI: 10.1016/j.tsf.2011.03.036
Keywords
  • N-Type Cucl Thin Films
  • Sputtering
  • Photoluminescence
  • Semiconductor
Disciplines
  • Physics

Abstract

Abstract γ Copper (I) chloride is naturally a direct band gap, zincblende and p-type semiconductor material with much potential in linear and non-linear optical applications owing to its large free excitonic binding energy. In order to fabricate an efficient electrically pumped emitter, a combination of both p-type and n-type semiconductor materials will be required. In this study, we report on the growth of n-type γ-CuCl with improved carrier concentration by pulsed DC magnetron sputtering of CuCl/Zn target. An improvement of carrier concentration up to an order of ~ 9.8 × 10 18 cm − 3 , which is much higher than the previously reported (~ 10 16 cm − 3 ), has been achieved. An enhancement in crystallinity of CuCl along the (111) orientation and its consistency with the morphological studies have also been investigated as an effect of doping. Influence of Zn wt.% in the sputtering target on the Hall mobility and resistivity of the doped films is explored. The strong ultraviolet emission of doped films is confirmed using room temperature and low temperature photoluminescence studies.

There are no comments yet on this publication. Be the first to share your thoughts.