Affordable Access

Publisher Website

IQGAP and mitotic exit network (MEN) proteins are required for cytokinesis and re-polarization of the actin cytoskeleton in the budding yeast,Saccharomyces cerevisiae

Authors
Journal
European Journal of Cell Biology
0171-9335
Publisher
Elsevier
Publication Date
Volume
85
Issue
11
Identifiers
DOI: 10.1016/j.ejcb.2006.08.001
Keywords
  • Yeast
  • Cytokinesis
  • Iqgap
  • Men
  • Actin
Disciplines
  • Biology

Abstract

Abstract In budding yeast the final stages of the cell division cycle, cytokinesis and cell separation, are distinct events that require to be coupled, both together and with mitotic exit. Here we demonstrate that mutations in genes of the mitotic exit network (MEN) prevent cell separation and are synthetically lethal in combination with both cytokinesis and septation defective mutations. Analysis of the synthetic lethal phenotypes reveals that Iqg1p functions in combination with the MEN components, Tem1p, Cdc15p Dbf20p and Dbf2p to govern the re-polarization of the actin cytoskeleton to either side of the bud neck. In addition phosphorylation of the conserved PCH protein, Hof1p, is dependent upon these activities and requires actin ring assembly. Recruitment of Dbf2p to the bud neck is dependent upon actin ring assembly and correlates with Hof1p phosphorylation. Failure to phosphorylate Hof1p results in the increased stability of the protein and its persistence at the bud neck. These data establish a mechanistic dependency of cell separation upon an intermediate step requiring actomyosin ring assembly.

There are no comments yet on this publication. Be the first to share your thoughts.