Affordable Access

Publisher Website

Jet eccentricity: A misleading source of agreement between Doppler/catheter pressure gradients in aortic stenosis

Journal of the American Society of Echocardiography
DOI: 10.1067/mje.2001.113648
  • Computer Science


Abstract Characterization of the severity of aortic stenosis relies on accurate measurement of the pressure gradient across the valve and the valve area. Pressure gradients measured by Doppler ultrasound based on the clinical form of the Bernoulli equation often overestimate pressure gradients by catheter as the result of pressure recovery. Doppler techniques measure the velocity of the vena contracta of the stenotic jet. This corresponds to the maximal pressure gradient and the minimal effective valve area. Pressure recovery can be characterized by analysis of the spread of the stenotic jet downstream of the valve as it fills the aorta and should be influenced by the shape of the velocity profile of the decaying jet. In this study, we addressed the hypothesis that the site of complete pressure recovery (the point at which the jet fully expands to the size of the aorta), the effective valve area, and the maximal pressure gradient are affected by jet eccentricity. To accomplish this, we developed a computational model of aortic stenosis that provides detailed velocity and pressure information in the vicinity of the valve. The results show that the width of the eccentric wall jet decreased and maximal velocity increased with greater jet eccentricity. Furthermore, for a constant anatomic area, the effective valve area decreased, the distance to complete pressure recovery increased, and the maximal pressure gradient increased with the degree of eccentricity. Failure to take this into account could fortuitously drive Doppler and catheter measurements toward agreement because the distal pressure sensor will not record the fully recovered pressure. Therefore the pressure gradient across a stenotic valve depends on jet eccentricity. The spread of the wall jet after attachment must be characterized to develop a robust method for the prediction of pressure recovery. (J Am Soc Echocardiogr 2001;14:853-62.)

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times

More articles like this

Jet eccentricity: a misleading source of agreement...

on Journal of the American Societ... September 2001

Jet eccentricity: a misleading source of agreement...

on Journal of the American Societ... March 2002

Discrepancy between gradients derived by cardiac c...

on Echocardiography (Mount Kisco,... October 2009

The role of jet eccentricity in generating disprop...

on Echocardiography (Mount Kisco,... February 2015
More articles like this..