Affordable Access

Publisher Website

Large volume phreatomagmatic ignimbrites from the Colli Albani volcano (Middle Pleistocene, Italy)

Journal of Volcanology and Geothermal Research
Publication Date
DOI: 10.1016/s0377-0273(02)00251-2
  • Phreatomagmatism
  • Phreatoplinian
  • Low Aspect Ratio Ignimbrite
  • Pyroclastic Flow
  • Colli Albani
  • Earth Science


Abstract In this paper we describe four large volume, ash- and accretionary lapilli-rich, phreatomagmatic compound ignimbrite units, mafic in composition, from Colli Albani volcano, south of Rome. The four units, that form the ‘Pisolitic Tuffs’ succession, are separated by paleosols and represent the earliest explosive large volume eruptive episodes from the Quaternary Alban Hills volcano. The occurrence of large volume phreatomagmatic–phreatoplinian eruptions implies the availability of large quantities of water interacting with the rising magma. The paleogeography of the area below the volcano has been reconstructed by the analysis of stratigraphic data from more than a thousand bore-holes distributed around the volcano that allowed to identify NW-trending and NE-trending paleotopographic lows that underlie the central area of the volcano and interpreted as extensional tectonic basins. These lows are filled with Lower to Middle Pleistocene, pre-volcanic lacustrine and fluvial deposits and suggest that at least the central part of the Colli Albani volcanic area hosted a large lake or lagoon. The absence of sedimentary xenoliths in the Pisolitic Tuffs and the low vesicularity of scoria and shards suggest that water interacted with a poorly fragmented magma at very shallow level, triggering the large explosivity of the eruptions. We suggest that water interacting with magma was mostly surficial water related to the presence of the lagoon or lake. In this environment, it is likely that vents were subaqueous allowing a continuous access of water to the conduit. Considering that the minimum calculated volume of products for the Pisolitic Tuffs succession is >37 km 3 and each eruption unit averages approximately around minimum volume of 10 km 3, we suggest that each eruption was related to a caldera collapse, which would have allowed the persistence of a Taupo-like lake in the central area and of phreatoplinian activity. After the last phreatomagmatic eruption, however, the fragmentation style of large volume ignimbrites from Colli Albani became magmatic, suggesting the extinction of the lake after that date. Each of the four units show a basal phreatoplinian fallout level, overlain by a complex association of low aspect ratio surge deposits and ignimbrites. Phreatomagmatic pyroclastic flow deposits are found at distances of more than 40 km from the central area of the volcano, and show important facies variation according to the paleotopography. To the west of the volcano, pyroclastic flows reached the Tyrrhenian coast and emplaced mostly stratified facies on a flat topography, interpreted to reflect both the spreading of pyroclastic flows on an unconfined topography and their interaction with lacustrine and lagoon areas. By contrast, to the east of the volcano, where pyroclastic flows were confined within paleovalleys, the main facies is thick and massive.

There are no comments yet on this publication. Be the first to share your thoughts.