Affordable Access

Regulation of neural cell adhesion molecule expression on cultured mouse Schwann cells by nerve growth factor.

Authors
Publication Date
Source
PMC
Keywords
  • Research Article

Abstract

Schwann cells from early postnatal mouse sciatic nerve were obtained as a homogenous population and shown by indirect immunofluorescence to express the neural cell adhesion molecules L1, N-CAM and J1 and their common carbohydrate epitope L2/HNK-1. L1 and N-CAM are synthesized in molecular forms that are slightly different from those expressed by small cerebellar neurons or astrocytes. As in astrocytes, the J1 antigen is expressed by Schwann cells in multiple forms generally ranging from 160 to 230 kd in the reduced state. J1 is secreted by Schwann cells in a 230-kd mol. wt form. Expression of L1 by Schwann cells can be regulated by nerve growth factor (NGF). L1 expression on the cell surface is increased 1.6-fold in the presence of NGF after 3 days of maintenance in vitro and 3-fold after 16 days. NGF does not change expression of N-CAM. The glia-derived neurite-promoting factor (GdNPF) increases L1 expression by a factor of 1.9 and decreases N-CAM expression by a factor of 0.4 after 3 days in vitro. J1 expression on Schwann cell surfaces remains unchanged in the presence of NGF or GdNPF. Antibodies to NGF abolish the influence of NGF on L1 expression. Addition of NGF antibodies to the Schwann cell cultures without exogenously added NGF decreases L1 expression, indicating that Schwann cells secrete NGF that may influence L1 expression by an autocrine mechanism. Our experiments show for the first time that cell adhesion molecule expression on a non-neuronal cell, the Schwann cell, can be directly regulated by the neurotrophic factor NGF. These observations indicate a considerable degree of 'plasticity' of peripheral glia in regulating cell adhesion molecule expression.

There are no comments yet on this publication. Be the first to share your thoughts.