Affordable Access

Publisher Website

Serine Protease Inhibitor Attenuates Ovalbumin Induced Inflammation in Mouse Model of Allergic Airway Disease

Public Library of Science
Publication Date
DOI: 10.1371/journal.pone.0041107
  • Research Article
  • Biology
  • Immunology
  • Immune System
  • Cytokines
  • Immunologic Techniques
  • Immunoassays
  • Allergy And Hypersensitivity
  • Immune Response
  • Immunoglobulins
  • Immunomodulation
  • Model Organisms
  • Animal Models
  • Mouse
  • Biology
  • Medicine


Background Serine proteases promote inflammation and tissue remodeling by activating proteinase-activated receptors, urokinase, metalloproteinases and angiotensin. In the present study, 4-(2-Aminoethyl) benzenesulfonyl fluoride (AEBSF) a serine protease inhibitor was evaluated for prophylactic and therapeutic treatment in mouse model of airway allergy. Methods BALB/c mice were sensitized by i.p route and challenged with ovalbumin. They were treated i.n. with 2, 10 and 50 µg of AEBSF, one hour before or after challenge and euthanized to collect BALF (bronchoalveolar lavage fluid), blood and lungs. Proteolytic activity, total cell/eosinophil/neutrophil count eosinophil peroxidase activity (EPO), IL-4, IL-5, IL-10, IL-13, cysteinyl leukotrienes and 8-isoprostane were determined in BALF and immunoglobulins were measured in serum. H&E and PAS stained lung sections were examined for cellular infiltration and airway inflammation. Results Mice exposed to ovalbumin and treated with PBS showed increased cellular infiltration in lungs and higher serum IgE, IgG1 and IgG2a levels as compared to sham mice. Treatment with AEBSF reduced total cells/eosinophil/neutrophil infiltration. Both prophylactic and therapeutic AEBSF treatment of 10 or 50 µg reduced serum IgE and IgG1 significantly (p<0.05) than control. AEBSF treatment reduced the proteolytic activity in BALF. IL-4 IL-5 and IL-13 levels decreased significantly (p<0.05) after AEBSF treatment while IL-10 levels increased significantly (p<0.05) in BALF. Airway inflammation and goblet cell hyperplasia reduced as demonstrated by lung histopathology, EPO activity and cysteinyl leukotrienes in BALF after treatment. AEBSF treatment also suppressed oxidative stress in terms of 8-isoprostane in BALF. Among the treatment doses, 10 or 50 µg of AEBSF were most effective in reducing the inflammatory parameters. Conclusions Prophylactic and therapeutic treatment with serine protease inhibitor attenuates the airway inflammation in mouse model of airway allergy and have potential for adjunct therapy.

There are no comments yet on this publication. Be the first to share your thoughts.