Affordable Access

Fate of Pyroxenite-derived Melts in the Peridotitic Mantle: Thermodynamic and Experimental Constraints

Authors
Publisher
Oxford University Press
Publication Date
Disciplines
  • Geography
  • Physics

Abstract

We performed a thermodynamic and experimental study to investigate the fate of pyroxenite-derived melts during their migration through the peridotitic mantle. We used a simplified model of interaction in which peridotite is impregnated by and then equilibrated with a finite amount of pyroxenite-derived liquid. We considered two pyroxenite compositions and three contexts of pyroxenitic melt impregnation: (1) in a subsolidus lithospheric mantle; (2) beneath a mid-ocean ridge (MOR) in a subsolidus asthenospheric mantle at high pressure; (3) beneath a MOR in a partially molten asthenospheric mantle. Calculations were performed with pMELTS at constant pressure and temperature with a melt–rock ratio varying in the range 0–1. Concurrently, a series of impregnation experiments was performed at 1 and 1·5 GPa to reproduce the final stages of the calculations where the melt–rock ratio is 1. Incoming melt and host-rocks react differently according to the melt composition and the physical state of the surrounding mantle. Whereas clinopyroxene (Cpx) is systematically a reaction product, the role of olivine (Ol) and orthopyroxene (Opx) depends on the incoming melt silica activity a^0_(SiO2): if it is lower than the silica activity Formula of a melt saturated in Ol and Opx at the same pressure P and temperature T, Opx is dissolved and Ol precipitates, and conversely if a_(SiO2) > a^0_(SiO2). Such contrasted reactions between pyroxenitic melts and peridotitic mantle may generate a large range of new lithological heterogeneities (wehrlite, websterite, clinopyroxenite) in the upper mantle. Also, our study shows that the ability of pyroxenite-derived melts to migrate through the mantle depends on the melting degree of the surrounding peridotite. The reaction of these melts with a subsolidus mantle results in strong melt consumption (40–100%) and substantial Cpx production (with some spinel or garnet, depending on P). This is expected to drastically decrease the system permeability and the capacity of pyroxenite-derived melts to infiltrate neighbouring rocks. In contrast, melt migration to the surface should be possible if the surrounding mantle is partially melted; although liquid reactivity varies with composition, melt consumption is restricted to less than 20%. Hence, magma–rock interactions can have a significant impact on the dynamics of melting and magma migration and should not be neglected when modelling the partial melting of heterogeneous mantle.

There are no comments yet on this publication. Be the first to share your thoughts.