Affordable Access

Optimal random perturbations for stochastic approximation using a simultaneous perturbation gradient approximation

Publication Date
  • Computer Science
  • Mathematics


The simultaneous perturbation stochastic approximation (SPSA) algorithm has attracted considerable attention for challenging optimization problems where it is difficult or impossible to obtain a direct gradient of the objective (say, loss) function. The approach is based on a highly efficient simultaneous perturbation approximation to the gradient based on loss function measurements. SPSA is based on picking a simultaneous perturbation (random) vector in a Monte Carlo fashion as part of generating the approximation to the gradient. This paper derives the optimal distribution for the Monte Carlo process. The objective is to minimize the mean square error of the estimate. The authors also consider maximization of the likelihood that the estimate be confined within a bounded symmetric region of the true parameter. The optimal distribution for the components of the simultaneous perturbation vector is found to be a symmetric Bernoulli in both cases. The authors end the paper with a numerical study related to the area of experiment design

There are no comments yet on this publication. Be the first to share your thoughts.