Affordable Access

Structural variation, dynamics, and catalytic application of palladium(II) complexes of di-N-heterocyclic carbene-amine ligands

Authors
Publication Date

Abstract

A series of palladium(II) complexes incorporating di-NHC-amine ligands has been prepared and their structural, dynamic and catalytic behaviour investigated. The complexes [trans-(k(2)-(CN)-C-tBu(Bn)CN(Bn)C-tBu)PdCl2] (12) and [trans-(kappa(2)-(CN)-C-Mes(H)C-Mes)PdCl2] (13) do not exhibit interaction between the amine nitrogen and palladium atom respectively. NMR spectroscopy between - 40 and 25 degrees C shows that the di-NHC-amine ligand is flexible expressing C-s symmetry and for 13 rotation of the mesityl groups is prevented. In the related C-1 complex [(kappa(3)-(CN)-C-tBu(H)C-tBu)PdCl][CI] (14) coordination of NHC moieties and amine nitrogen atom is observed between -40 and 25 degrees C. Reaction between 12 - 14 and two equivalents of AgBF4 in acetonitrile gives the analogous complexes [trans-(kappa(2)-(CN)-C-tBu(Bn)C-tBu)PdCl2] (12) and [trans-(kappa(CN)-C-2Mes(H)C-Mes)PdCl2] (13) do not exhibit interaction between the amine nitrogen and palladium atom respectively. NMR spectroscopy between -40 ans 25 degrees C shows the di-NHC-amine ligand is flexible expressing C-s symmetry and for 13 rotation of the mesityl groups is prevented. In the related C-1 complex [kappa(3)-(CN)-C-tBu(H)C-tBu)PdCI][CI] (14) coordination of NHC moieties and amine nitrogen atom is observed between -40 and 25 degrees C.Reaction between 12-14 and two equivalents of AgBF4 in acetonitrile gives the analogous complexes [trans-(kappa(2)-(CN)-C-tBu(H)(CPd)-Pd-tBu(MeCN)(2)][BF4](2) (15), [trans-(kappa(CN)-C-2Mes(H)C-Mes)Pd(MeCN)(2)[BF4](2 (16)) and [(kappa(3)-(CN)-C-tBu(H)C-tBu)Pd(MeCN)][BF4](2) (17) indicating that ligand structure determines amine coordination. The single crystal X-ray structures of 12, 17 and two ligand imidazolium salt precursors C-tBu(H)N(Bn)C(H) (tBu)][CI](2) (2) and [C-tBu(H) N(H)C(H)(tBu)][BPh4](2) (4) have been determined. Complexes 12-14 and 15-17 have been shown to be active precatalysts for Heck and hydroamination reactions respectively.

There are no comments yet on this publication. Be the first to share your thoughts.