Affordable Access

Identification and characterization of a novel mechanism of multidrug resistance in tumour cells

Authors
Publisher
McGill University
Publication Date
Keywords
  • Cancer -- Chemotherapy.
  • Multidrug Resistance.
  • P-Glycoprotein.
Disciplines
  • Biology
  • Chemistry
  • Pharmacology

Abstract

Selection of tumour cell lines in vitro has led to multiple cellular changes that may mediate drug resistance to anticancer drugs. The role of other mechanisms, in addition to P-gp and multidrug resistance protein (MRP) in drug resistance, is supported by evidence from studies with tumour cell lines and clinical tumours. In an effort to identify other cellular changes that may be important in tumour drug resistance to anticancer drugs, we have used a differential immunodot blot method to isolate monoclonal antibodies that bind to proteins in drug resistant but not in drug sensitive cells. By using the immunodot blot method, we have isolated a monoclonal antibody (IPM96) which recognized a 40 kDa protein (P-40) in several MDR cell lines. The expression of P-40 is concurrent with the level of drug resistance. Biochemical characterization showed P-40 to be associated with the cell membrane and in the soluble fraction. Molecular cloning of P40 cDNA revealed that P-40 is identical to annexin I, a substrate for the epidermal growth factor receptor tyrosine kinase. The observed increase in P-40 (or annexin I) protein levels in drug resistant cells is due to the elevation of P-40 transcripts. The pharmacological characterization of P-40 cDNA transfectants (P-40-MCF-7) has demonstrated that overexpression of P-40 in drug sensitive cells is capable of conferring drug resistance to adriamycin, actinomycin D, Taxol and cisplatin. Taken together, our study provides convincing evidence that annexin I is important in the development of drug resistance in cancer cells. In addition, it suggests a novel mechanism of drug resistance that is different from the ATP-dependent drug efflux pumps that mediate P-gp- and MRP-associated MDR

There are no comments yet on this publication. Be the first to share your thoughts.