Affordable Access

Interaction of theE. coliDNA G:T-mismatch Endonuclease (vsr Protein) with Oligonucleotides Containing its Target Sequence

Authors
Journal
Journal of Molecular Biology
0022-2836
Publisher
Elsevier
Publication Date
Volume
304
Issue
5
Identifiers
DOI: 10.1006/jmbi.2000.4248
Keywords
  • Protein-Dna Recognition
  • Vsr Endonuclease
  • Dna G:T Mismatches
  • Mismatch Repair
Disciplines
  • Biology

Abstract

Abstract The Escherichia coli vsr endonuclease recognises G:T base-pair mismatches in double-stranded DNA and initiates a repair pathway by hydrolysing the phosphate group 5′ to the incorrectly paired T. The enzyme shows a preference for G:T mismatches within a particular sequence context, derived from the recognition site of the E. coli dcm DNA-methyltransferase (CC[A/T]GG). Thus, the preferred substrate for the vsr protein is (C T [A/T]GG), where the underlined T is opposed by a dG base. This paper provides quantitative data for the interaction of the vsr protein with a number of oligonucleotides containing G:T mismatches. Evaluation of specificity constant ( k st/ K D; k st=rate constant for single turnover, K D=equilibrium dissociation constant) confirms vsr's preference for a G:T mismatch within a hemi-methylated dcm sequence, i.e. the best substrate is a duplex (both strands written in the 5′-3′ orientation) composed of C T [A/T]GG and C 5MeC[T/A]GG. Conversion of the mispaired T (underlined) to dU or the d 5MeC to dC gave poorer substrates. No interaction was observed with oligonucleotides that lacked a G:T mismatch or did not possess a dcm sequence. An analysis of the fraction of active protein, by “reverse-titration” (i.e. adding increasing amounts of DNA to a fixed amount of protein followed by gel-mobility shift analysis) showed that less than 1 % of the vsr endonuclease was able to bind to the substrate. This was confirmed using “competitive titrations” (where competitor oligonucleotides are used to displace a 32P-labelled nucleic acid from the vsr protein) and burst kinetic analysis. This result is discussed in the light of previous in vitro and in vivo data which indicate that the MutL protein may be needed for full vsr activity.

There are no comments yet on this publication. Be the first to share your thoughts.