Affordable Access

Publisher Website

High-Level Expression and Purification of a Recombinant Human α-1,3-Fucosyltransferase in Baculovirus-Infected Insect Cells

Authors
Journal
Protein Expression and Purification
1046-5928
Publisher
Elsevier
Publication Date
Volume
10
Issue
3
Identifiers
DOI: 10.1006/prep.1997.0751
Disciplines
  • Biology

Abstract

Abstract A human α-1,3-fucosyltransferase (Fuc-TVII) was expressed by recombinant baculovirus-infected insect Sf9 cells as a secretory fusion protein. The fusion protein consisted of the human granulocyte colony-stimulating factor signal peptide followed by an IgG-binding domain of protein A, a Fuc-TVI-derived peptide, and the putative catalytic domain of Fuc-TVII. The signal peptide was correctly cleaved and the recombinant Fuc-TVII was secreted into the culture medium at a concentration of 10 μg/ml. The recombinant Fuc-TVII could be highly purified in a single-step purification procedure, i.e., IgG–Sepharose column chromatography. The enzymatic properties of the Sf9-produced Fuc-TVII were compared with the properties of that expressed by a human B-cell line, Namalwa KJM-1, transfected with an episomal plasmid carrying the fusion Fuc-TVII cDNA. Both recombinant proteins showed α-1,3-fucosyltransferase activity toward a type II oligosaccharide with a terminal α-2,3-linked sialic acid among various acceptors. The apparent K m values of Sf9-produced Fuc-TVII for GDP-fucose and its acceptor substrate were slightly lower than those of the Fuc-TVII produced by Namalwa KJM-1 cells. Sf9-produced Fuc-TVII has N-linked carbohydrate chains whose molecular weights are lower than those linked to Namalwa KJM-1-produced Fuc-TVII. This difference in carbohydrate structure hardly affects the thermal stability of Fuc-TVII. The baculovirus expression system is available for high-level expression of stable and enzymatically active secretory Fuc-TVII.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments