Affordable Access

Publisher Website

Complement Factor H Is Expressed in Adipose Tissue in Association With Insulin Resistance

Authors
Journal
Diabetes
0012-1797
Publisher
American Diabetes Association
Publication Date
Volume
59
Issue
1
Identifiers
DOI: 10.2337/db09-0700
Keywords
  • Original Article
  • Pathophysiology
Disciplines
  • Biology

Abstract

OBJECTIVE Activation of the alternative pathway of the complement system, in which factor H (fH; complement fH [CFH]) is a key regulatory component, has been suggested as a link between obesity and metabolic disorders. Our objective was to study the associations between circulating and adipose tissue gene expressions of CFH and complement factor B (fB; CFB) with obesity and insulin resistance. RESEARCH DESIGN AND METHODS Circulating fH and fB were determined by enzyme-linked immunosorbent assay in 398 subjects. CFH and CFB gene expressions were evaluated in 76 adipose tissue samples, in isolated adipocytes, and in stromovascular cells (SVC) (n = 13). The effects of weight loss and rosiglitazone were investigated in independent cohorts. RESULTS Both circulating fH and fB were associated positively with BMI, waist circumference, triglycerides, and inflammatory parameters and negatively with insulin sensitivity and HDL cholesterol. For the first time, CFH gene expression was detected in human adipose tissue (significantly increased in subcutaneous compared with omental fat). CFH gene expression in omental fat was significantly associated with insulin resistance. In contrast, CFB gene expression was significantly increased in omental fat but also in association with fasting glucose and triglycerides. The SVC fraction was responsible for these differences, although isolated adipocytes also expressed fB and fH at low levels. Both weight loss and rosiglitazone led to significantly decreased circulating fB and fH levels. CONCLUSIONS Increased circulating fH and fB concentrations in subjects with altered glucose tolerance could reflect increased SVC-induced activation of the alternative pathway of complement in omental adipose tissue linked to insulin resistance and metabolic disturbances.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments

More articles like this

Irisin is expressed and produced by human muscle a...

on The Journal of Clinical Endocr... April 2013

Human adipsin is identical to complement factor D...

on Journal of Biological Chemistr... May 05, 1992

Alterations of the classic pathway of complement i...

on AJP Endocrinology and Metaboli... May 2007
More articles like this..