Affordable Access

Publisher Website

A mechanism by which primary or secondary hypothalamic involvement results in the development of insulin-dependent diabetes mellitus (IDDM)

Journal of Theoretical Biology
Publication Date
DOI: 10.1016/s0022-5193(84)80203-9
  • Chemistry
  • Medicine


A literature survey and hypothesis is presented in which it is concluded that an intracellular ventromedial hypothalamic (VMH) glucopenia results in a bibrachial response consisting of adenohypophysial release of growth hormone and ACTH as well as sympathetic discharge, both of which act to elevate plasma glucose and remove the VMH glucopenia. This glucopenia may occur as a result of either a deficiency of circulating insulin or alterations in the kinetic properties of the VMH cellular insulin receptor. Two mechanisms for the development of insulin dependent diabetes mellitus (IDDM) are presented: (1) a defect in VMH glucose transport and/or metabolism such that a VMH glucopenia occurs with a subsequent bibrachial response. The result of this is glucose overproduction and a chronic excess glucose stimulus will eventually cause B-cell exhaustion (primary hypothalamic involvement). (2) reduction of the B-cell population by chemical, genetic and/or viral interactions with a consequential insulopenia results in a VMH glucopenia (secondary to a reduced glucose transport into the VMH cells) and causes a bibrachial response. This VMH response may temporarily restore plasma glucose balance but a chronically enhanced counter-regulatory response to maintain this balance will eventually stress the remaining B-cell population and cause further reductions in B-cell numbers (secondary hypothalmic involvement).

There are no comments yet on this publication. Be the first to share your thoughts.