Affordable Access

Publisher Website

Neurohumoral regulation of spontaneous constrictions in suburothelial venules of the rat urinary bladder

Vascular Pharmacology
DOI: 10.1016/j.vph.2014.01.002
  • Microcirculation
  • Bladder
  • Suburothelium
  • Vasomotion
  • Adrenergic Nerve
  • Chemistry


Abstract Venules of the bladder suburothelium develop spontaneous phasic constrictions that may play a critical role in maintaining venular drainage of tissue metabolites. We aimed to investigate neurohumoral regulation of the spontaneous venular constrictions (SVCs). Changes in venular diameter of the rat bladder suburothelium were monitored using a video tracking system, whilst the effects of electrical field stimulation (EFS) and bath-applied bioactive substances were investigated. The innervation of the suburothelial microvasculature was examined by immunohistochemistry. EFS (10Hz for 30s) induced an increase in the frequency of SVCs that was prevented by phentolamine (1μM). In phentolamine-pretreated venules, EFS suppressed SVCs with a venular dilatation in a manner attenuated by propranolol (1μM) or l-nitro arginine (LNA, 10μM). BRL37344 (1μM), a β3 adrenoceptor agonist, dilated venules and reduced the frequency of SVCs in an LNA-sensitive manner. ACh (1–10μM) increased the frequency of SVCs. ATP (1μM) transiently constricted venules and then caused LNA-sensitive cessation of SVCs associated with a dilatation. Substance P (100nM) caused a venular constriction, whilst calcitonin gene related peptide (CGRP, 100nM) caused a dilatation of venules and suppression of SVCs that were not inhibited by LNA. Immunohistochemical staining demonstrated sympathetic as well as substance P- and CGRP-containing nerves running along the venules. Spontaneous constrictions of suburothelial venules are accelerated by sympathetic α-adrenergic stimulation, but suppressed upon β-adrenergic stimulation. In addition, suburothelial venular constrictions appear to be modulated by several bioactive substances that could be released from urothelium or suburothelial sensory nerves.

There are no comments yet on this publication. Be the first to share your thoughts.