Affordable Access

Publisher Website

In vivo modulation of polo-like kinases supports a key role for PLK2 in Ser129 α-synuclein phosphorylation in mouse brain

Publication Date
DOI: 10.1016/j.neuroscience.2013.09.061
  • Brain
  • Bi 2536
  • Polo-Like Kinase
  • Plk2
  • Parkinson’S Disease
  • Synuclein
  • Biology
  • Medicine
  • Pharmacology


Abstract α-Synuclein is the major component of Lewy bodies. α-Synuclein phosphorylated at Ser 129 (Phospho-α-Syn) is the most common synuclein modification observed in Parkinson’s disease pathology and transgenic animal models. Polo-like kinase 2 (PLK2) was previously proposed as an important kinase in α-synuclein phosphorylation at Ser129. To better understand the role of PLK2 in α-synuclein phosphorylation in vivo, we further evaluated the effect of PLK2 genetic knockdown and pharmacological inhibition on Phospho-α-Syn levels in different brain regions of PLK2 knockout (KO), heterozygous (Het) and wild-type (WT) mice. Whereas PLK2 knockdown had no effect on Total-α-synuclein brain levels, it resulted in a gene-dosage dependent, albeit incomplete, reduction of endogenous Phospho-α-Syn levels in all brain regions investigated. No compensatory induction of other α-synuclein kinases (PLK3, casein kinase-2, G-protein-coupled receptor kinase 5 (GRK5) and GRK6) was observed at the mRNA level in the PLK2 KO mouse brain. To determine whether increased activity of another PLK family member is responsible for the residual Phospho-α-Syn levels in the PLK2 KO mouse brain, the pan-PLK inhibitor BI 2536 was tested in PLK2 KO mice. Whereas BI 2536 reduced Phospho-α-Syn levels in WT mice, it did not further reduce the residual endogenous Phospho-α-Syn levels in PLK2 KO and Het mice, suggesting that a kinase other than PLK1–3 accounts for the remaining PLK inhibitor-resistant pool in the mouse brain. Moreover, PLK3 KO in mice had no effect on both Total- and Phospho-α-Syn brain levels. These results support a significant role for a PLK kinase in phosphorylating α-synuclein at Ser129 in the brain, and suggest that PLK2 is responsible for this activity under physiological conditions.

There are no comments yet on this publication. Be the first to share your thoughts.