Affordable Access

Publisher Website

Fiberoptic measurement of tendon forces is influenced by skin movement artifact

Journal of Biomechanics
Publication Date
DOI: 10.1016/s0021-9290(02)00414-1
  • Skin Effect
  • Fiberoptics
  • Force Transducer
  • Tendon Force
  • Implantable


Abstract Fiberoptic cables have previously been used for tendon force measurements in vivo. To measure forces in the Achilles tendon, a cable is passed mediolaterally through the skin and tendon, transverse to the loading axis. As the tendon is loaded, its fibers compress the cable and modulate the intensity of transmitted light, which can be related to tendon force by an in situ calibration. The relative movement between skin and tendon at the cable entry and exit sites may cause error by bending the cable and thus altering transducer output. Cadaver simulations of walking were conducted to compare fiberoptic measurements of Achilles tendon forces to known loads applied to the tendon by actuators attached in series. Force measurement errors, which were high when the skin was intact (RMS errors 24–81% peak forces), decreased considerably after skin removal (RMS errors 10–33% peak forces). The fiberoptic transducer is a useful tool for measurement of tendon forces in situ under natural loading conditions when skin can be removed, but caution should be exercised during in vivo use of this technique or under circumstances where skin is in contact with the fiberoptic cable at the insertion and exit sites.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times

More articles like this

Fiberoptic measurement of tendon forces is influen...

on Journal of Biomechanics March 2003

Measurement of dynamic scapular kinematics using a...

on Journal of Visualized Experime... 2015

Flexor tendon forces: In vivo measurements

on The Journal Of Hand Surgery Jan 01, 1992

Flexor tendon forces: in vivo measurements.

on The Journal of hand surgery March 1992
More articles like this..