Affordable Access

Hormone-sensitive lipase in differentiated 3T3-L1 cells and its activation by cyclic AMP-dependent protein kinase.

Publication Date
  • Research Article
  • Biology


Differentiation of 3T3-L1 fibroblasts to adipocyte-like cells was accompanied by a 19-fold increase in neutral triglyceride lipase activity, a 12-fold increase in diglyceride lipase activity, a 10-fold increase in monoglyceride lipase activity, and a 280-fold increase in cholesterol esterase activity. In contrast, acid acylhydrolase activities did not increase during differentiation. The rate of glycerol release from unstimulated intact cells increased by more than 1 order of magnitude upon differentiation. Isoproterenol (1 microM) and 1-methyl-3-isobutylxanthine (0.1 mM) further stimulated this rate of glycerol release 3-fold. The neutral triglyceride lipase activity in cell-free preparations of differentiated cells was activated 105% by cyclic AMP-dependent protein kinase. Neutral cholesterol esterase, diglyceride lipase, and monoglyceride lipase were also activated (117%, 10%, and 37+, respectively) by cyclic AMP-dependent protein kinase. In contrast, protein kinase had no effect on any of the four lysosomal acid acylhydrolase activities. Thus, hormone-sensitive lipase, the most characteristic and functionally important enzyme of adipose tissue, has been characterized in differentiated 3T3-L1 cells. The 3T3-L1 cell should be a valuable model system in which to study regulation of hormone-sensitive lipase, particularly its long-term regulation.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times