Affordable Access

Operational formulae for certain classical polynomials - III

Authors
Publication Date
Disciplines
  • Law
  • Mathematics

Abstract

Operational formulae for certain classical polynomials - III RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA SANTIKUMARCHATTERJEA Operational formulae for certain classical polynomials - III Rendiconti del Seminario Matematico della Università di Padova, tome 33 (1963), p. 271-277. <http://www.numdam.org/item?id=RSMUP_1963__33__271_0> © Rendiconti del Seminario Matematico della Università di Padova, 1963, tous droits réservés. L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’ac- cord avec les conditions générales d’utilisation (http://www.numdam.org/legal. php). Toute utilisation commerciale ou impression systématique est consti- tutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ OPERATIONAL FORMULAE FOR CERTAIN CLASSICAL POLYNOMIALS - III *) di SANTI KUMAR CHATTERJEA (a 1. In an earlier paper [il we found the operational formula where r!A(.c’, (I, b) is the generalised Bessel polynomials as defined by Krall and Frink [21. In we also noticed the following consequences of (1. t j : where y.(x) is the pecial case of the polynomials y.(x, a, b), - *) l’ervenuta in redazione il t5 gennaio 1963. Indirizzo dell’A.: Department of mathematics, Bangabasi Calcutta (~ndia-). 272 obtained by taking a = b = 2. which imnplius well-known formulae: Later in a reoent paper [3] we have obtained the operational formula which generaliscs the opera.tional formula derived by Rajago- pal [4]: In [:3] we have a180 derived the following formulae: where On(x, a, b) are. those polynomials defined by Burehnall [5]: 273 where L1ae) (x) is the generalised Laguerre polynomi:ls. In this connection we like to mention that we ha,ve been inspired by Carlitz’s work [6]. The

There are no comments yet on this publication. Be the first to share your thoughts.