# Computing the minimal covering set

- Authors
- Disciplines

## Abstract

We present the first polynomial-time algorithm for computing the minimal covering set of a (weak) tournament. The algorithm draws upon a linear programming formulation of a subset of the minimal covering set known as the essential set. On the other hand, we show that no efficient algorithm exists for two variants of the minimal covering set-the minimal upward covering set and the minimal downward covering set-unless P equals NP. Finally, we observe a strong relationship between von Neumann-Morgenstern stable sets and upward covering on the one hand, and the Banks set and downward covering on the other.

## There are no comments yet on this publication. Be the first to share your thoughts.