Affordable Access

Quantitation of the rabbit intestinal glycolipid receptor for Shiga toxin:Further evidence for the developmental regulation of globotriaosylceramide in microvillus membranes

Authors
Journal
Gastroenterology
0016-5085
Publisher
Elsevier
Publication Date
Keywords
  • Alimentary Tract
Disciplines
  • Biology

Abstract

Abstract Shiga toxin, produced by Shigella dysenteriae 1, causes enterotoxic, cytotoxic, and neurotoxic effects, which may be mediated by a glycolipid receptor, globotriaosylceramide, Gb 3. To study the relationship of this receptor and toxin effects, globotriaosylceramide was quantitated and further characterized in rabbit small intestinal microvillus membranes at various ages. Glycolipids were extracted from rabbit microvillus membranes, purified on Unisil columns, and quantitated by highperformance liquid chromatography. The major glycolipid peaks were hydroxylated fatty acid-containing glucosylceramide, lactosylceramide, and globotriaosylceramide. There was a marked increase of globotriaosylceramide levels with age, ranging from 0.02 to 16.2 pmol/μg microvillus membrane protein in neonates and adults, respectively. The globotriaosylceramide peak was susceptible to α-galactosidase treatment, which produced an elevation in the lactosylceramide peak, but markedly reduced globotriaosylceramide content in 34-day-old rabbits. Binding of iodinated Shiga toxin to globotriaosylceramide was documented on highperformance thin-layer chromatography plates by autoradiography. The glycolipid receptor for Shiga toxin in rabbit microvillus membranes is thus a hydroxylated fatty acid-containing globotriaosylceramide. This moiety is virtually absent in neonates and gradually increases with age. Quantitative differences in globotriaosylceramide may be the underlying basis for the age-specific differences in functional responsiveness of rabbit intestinal tissue to Shiga toxin.

There are no comments yet on this publication. Be the first to share your thoughts.