Affordable Access

Adaptive polar sampling with an application to a Bayes measure of value-at-risk

Authors
Disciplines
  • Computer Science

Abstract

Adaptive Polar Sampling (APS) is proposed as a Markov chain Monte Carlo method for Bayesian analysis of models with ill-behaved posterior distributions. In order to sample efficiently from such a distribution, location-scale transformation and a transformation to polar coordinates are used. After the transformation to polar coordinates, a MetropolisHastings algorithm is applied to sample directions and, conditionally on these, distances are generated by inverting the CDF. A sequential procedure is applied to update the location and scale. Tested on a set of canonical models that feature near non-identifiability, strong correlation, and bimodality, APS compares favourably with the standard Metropolis-Hastings sampler in terms of parsimony and robustness. APS is applied within a Bayesian analysis of a GARCH-mixture model which is used for the evaluation of the Value-at-Risk of the return of the Dow Jones stock index.

There are no comments yet on this publication. Be the first to share your thoughts.