Affordable Access

Access to the full text

On ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-soft topological semigroups

Authors
  • Bahredar, A. A.1
  • Kouhestani, N.1
  • 1 University of Sistan and Baluchestan, Zahedan, Iran , Zahedan (Iran)
Type
Published Article
Journal
Soft Computing
Publisher
Springer-Verlag
Publication Date
Mar 10, 2020
Volume
24
Issue
10
Pages
7035–7046
Identifiers
DOI: 10.1007/s00500-020-04826-7
Source
Springer Nature
Keywords
License
Yellow

Abstract

In this paper, we introduce e-right, e-left, e-semi and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-soft topological semigroups and examine the way these are related to each other. To do so, we need to define \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigtriangleup $$\end{document}-soft and point open soft topologies, which are defined in the third and fourth sections, respectively. Also, soft separation axioms on these soft topologies will be studied.

Report this publication

Statistics

Seen <100 times