ElNaghy, Hanan Dorst, Leo
Published in
Mathematical Morphology - Theory and Applications
When fitting archaeological artifacts, one would like to have a representation that simplifies fragments while preserving their complementarity. In this paper, we propose to employ the scale-spaces of mathematical morphology to hierarchically simplify potentially fitting fracture surfaces. We study the masking effect when morphological operations a...
Micheal, Omojola Kilic, Emrah
Published in
Special Matrices
Symmetric matrix classes of bandwidth 2r + 1 was studied in 1972 through binomial coefficients. In this paper, non-symmetric matrix classes with the binomial coefficients are considered where r + s + 1 is the bandwidth, r is the lower bandwidth and s is the upper bandwidth. Main results for inverse, determinants and norm-infinity of inverse are pre...
Altınışık, Ercan
Published in
Special Matrices
Given a real number a ≥ 1, let Kn(a) be the set of all n × n unit lower triangular matrices with each element in the interval [−a, a]. Denoting by λn(·) the smallest eigenvalue of a given matrix, let cn(a) = min {λ n(YYT) : Y ∈ Kn(a)}. Then cn(a)\sqrt {{c_n}\left( a \right)} is the smallest singular value in Kn(a). We find all minimizing matrices. ...
Kişi, Emre Sarduvan, Murat Özdemir, Halim Kalaycı, Nurgül
Published in
Special Matrices
We propose an algorithm, which is based on the method given by Kişi and Özdemir in [Math Commun, 23 (2018) 61], to handle the problem of when a linear combination matrix X=∑i=1mciXiX = \sum\nolimits_{i = 1}^m {{c_i}{X_i}} is a matrix such that its spectrum is a subset of a particular set, where ci, i = 1, 2, ..., m, are nonzero scalars and Xi, i = ...
Carmona, A. Encinas, A.M. Mitjana, M.
Published in
Special Matrices
By using combinatorial techniques, we obtain an extension of the matrix-tree theorem for general symmetric M-matrices with no restrictions, this means that we do not have to assume the diagonally dominance hypothesis. We express the group inverse of a symmetric M–matrix in terms of the weight of spanning rooted forests. In fact, we give a combinato...
Deaett, Louis Garnett, Colin
Published in
Special Matrices
Given a square matrix A, replacing each of its nonzero entries with the symbol * gives its zero-nonzero pattern. Such a pattern is said to be spectrally arbitrary when it carries essentially no information about the eigenvalues of A. A longstanding open question concerns the smallest possible number of nonzero entries in an n × n spectrally arbitra...
Deng, Quanling
Published in
Special Matrices
It is well-known that the finite difference discretization of the Laplacian eigenvalue problem −Δu = λu leads to a matrix eigenvalue problem (EVP) Ax =λx where the matrix A is Toeplitz-plus-Hankel. Analytical solutions to tridiagonal matrices with various boundary conditions are given in a recent work of Strang and MacNamara. We generalize the resu...
Oboudi, Mohammad Reza
Published in
Special Matrices
The Seidel energy of a simple graph G is the sum of the absolute values of the eigenvalues of the Seidel matrix of G. In this paper we study the Seidel eigenvalues of complete multipartite graphs and find the exact value of the Seidel energy of the complete multipartite graphs.
Carter, D. DiMarco, K.E. Johnson, C.R. Wedemeyer, L. Yu, Z.
Published in
Special Matrices
The 3-by-n TP-completable patterns are characterized by identifying the minimal obstructions up to natural symmetries. They are finite in number.
Prodinger, Helmut
Published in
Special Matrices
The lattice path model suggested by E. Deutsch is derived from ordinary Dyck paths, but with additional down-steps of size −3, −5, −7, . . . . For such paths, we find the generating functions of them, according to length, ending at level i, both, when considering them from left to right and from right to left. The generating functions are intrinsic...