Paving the way for biobased materials : a roadmap for the market introduction of PHAs
Block copolymers (BCPs) are remarkable materials because of their self-assembly behavior into nano-sized regular structures and high tunable properties. BCPs are in used various applications such as surfactants, nanolithography, biomedicine and nanoporous membranes. In these thesis, we aimed to fabricate thermo-responsive iso- and nanoporous membra...
Microalgae are a potential feedstock for various products. At the moment, they are already used as feedstock for high-valuable products (e.g. aquaculture and pigments). Microalgae pre-dominantly consist out of proteins, lipids and carbohydrates. This makes algae an interesting feedstock for various bulk-commodities. To successfully produce bulk-com...
From a chemistry perspective, proteins can be thought of as polymers of amino acids, linked by amide bonds. They feature unsurpassed control over monomer sequence and molecular size. The amino acid sequence of proteins determines their three-dimensional folded structure, resulting in unique properties. Proteins such as collagen, elastin, and silk p...
Supramolecular systems are solutions, suspensions or solids, formed by physical and non-covalent interactions. These weak and dynamic bonds drive molecular self-assembly in nature, leading to formation of complex ordered structures in high precision. Understanding self-assembly and co-assembly is crucial to unravel and mimic many processes occurrin...
Bottlebrushes are macromolecules consisting of a backbone polymer onto which side chains are either physically or chemically grafted. Early theories suggested that attaching side chains to a (flexible) backbone molecule would induce the so-called main-chain stiffening effect. This newly formed bottlebrush molecule should therefore behave as a semi-...
Supramolecular assemblies formed by protein polymers are attractive candidates for future biomaterials. Ideally, one would like to be able to define the nanostructure, in which the protein polymers should self-assemble, and then design protein polymer sequences that assemble exactly into such nanostructures. Despite progress towards ‘programmabilit...
Tissue engineering is a relatively new, but actively developing field of biomedical science. It aims at organ or tissue regeneration by use of scaffolds, which are usually seeded with cells prior to implantation, and stimulated by bioactive cues or growth factors. It is a promising and valuable alternative to the use of transplants, for which the d...
In this thesis we presented various combinations of custom-designed protein polymers that formed composite hydrogels. In chapter 2, composite hydrogels were prepared by mixing silk-like block copolymers (CP2SE48CP2) with collagen-like block copolymers (T9CR4T9). We found that by adding the collagen-like protein polymer the storage modulus, the crit...