We give the classification of all (minimal) Cayley bipartite or perfect finite groups as well as finite graphs $Gamma$ for which there are only finitely many (minimal) Cayley $Gamma$-free groups.

We give the classification of all (minimal) Cayley bipartite or perfect finite groups as well as finite graphs $Gamma$ for which there are only finitely many (minimal) Cayley $Gamma$-free groups.

We give the classification of all (minimal) Cayley bipartite or perfect finite groups as well as finite graphs $Gamma$ for which there are only finitely many (minimal) Cayley $Gamma$-free groups.

We give the classification of all (minimal) Cayley bipartite or perfect finite groups as well as finite graphs $Gamma$ for which there are only finitely many (minimal) Cayley $Gamma$-free groups.

We give the classification of all (minimal) Cayley bipartite or perfect finite groups as well as finite graphs $Gamma$ for which there are only finitely many (minimal) Cayley $Gamma$-free groups.

We give the classification of all (minimal) Cayley bipartite or perfect finite groups as well as finite graphs $Gamma$ for which there are only finitely many (minimal) Cayley $Gamma$-free groups.

We give the classification of all (minimal) Cayley bipartite or perfect finite groups as well as finite graphs $Gamma$ for which there are only finitely many (minimal) Cayley $Gamma$-free groups.

We give the classification of all (minimal) Cayley bipartite or perfect finite groups as well as finite graphs $Gamma$ for which there are only finitely many (minimal) Cayley $Gamma$-free groups.

Inspired by a question of Yannakakis on the Vertex Packing polytope of perfect graphs, we study the Clique-Stable Set separation in a non-hereditary subclass of perfect graphs. A cut (B, W) of G (a bipartition of V (G)) separates a clique K and a stable set S if $K ⊆ B$ and $S ⊆ W$. A Clique-Stable Set separator is a family of cuts such that for ev...

Inspired by a question of Yannakakis on the Vertex Packing polytope of perfect graphs, we study the Clique-Stable Set separation in a non-hereditary subclass of perfect graphs. A cut (B, W) of G (a bipartition of V (G)) separates a clique K and a stable set S if $K ⊆ B$ and $S ⊆ W$. A Clique-Stable Set separator is a family of cuts such that for ev...