Kaviraj, Apratim Rychkov, Slava Trevisani, Emilio
Published in
Journal of High Energy Physics

Quenched disorder is very important but notoriously hard. In 1979, Parisi and Sourlas proposed an interesting and powerful conjecture about the infrared fixed points with random field type of disorder: such fixed points should possess an unusual supersymmetry, by which they reduce in two less spatial dimensions to usual non-supersymmetric non- diso...

Rutter, Daniel van Rees, Balt C.

We extend the definition of alpha space as introduced in [1] to two spacetime dimensions. We discuss how this can be used to find conformal block decompositions of known functions and how to easily recover several lightcone bootstrap results. In the second part of the paper we establish a connection between alpha space and the Lorentzian inversion ...

Kravchuk, Petr Qiao, Jiaxin Rychkov, Slava

We show that the four-point functions in conformal field theory are defined as distributions on the boundary of the region of convergence of the conformal block expansion. The conformal block expansion converges in the sense of distributions on this boundary, i.e. it can be integrated term by term against appropriate test functions. This can be int...

Burić, Ilija Schomerus, Volker Isachenkov, Mikhail

The decomposition of correlation functions into conformal blocks is an indispensable tool in conformal field theory. For spinning correlators, non-trivial tensor structures are needed to mediate between the conformal blocks, which are functions of cross ratios only, and the correlation functions that depend on insertion points in the $d$-dimensiona...

Lauria, Edoardo Meineri, Marco Trevisani, Emilio
Published in
Journal of High Energy Physics

We study the kinematics of correlation functions of local and extended operators in a conformal field theory. We present a new method for constructing the tensor structures associated to primary operators in an arbitrary bosonic representation of the Lorentz group. The recipe yields the explicit structures in embedding space, and can be applied to ...

Belliard, Raphaël Eynard, Bertrand

We consider the moduli space of holomorphic principal bundles for reductive Lie groups over Riemann surfaces (possibly with boundaries) and equipped with meromorphic connections. We associate to this space a point-wise notion of quantum spectral curve whose generalized periods define a new set of moduli. We define homology cycles and differential f...

Ribault, Sylvain

We investigate exactly solvable two-dimensional conformal field theories that exist at generic values of the central charge, and that interpolate between A-series or D-series minimal models. When the central charge becomes rational, correlation functions of these CFTs may tend to correlation functions of minimal models, or diverge, or have finite l...

Poland, David Rychkov, Slava Vichi, Alessandro

Conformal field theories have been long known to describe the fascinating universal physics of scale invariant critical points. They describe continuous phase transitions in fluids, magnets, and numerous other materials, while at the same time sit at the heart of our modern understanding of quantum field theory. For decades it has been a dream to s...

Belavin, Vladimir Haraoka, Yoshishige Santachiara, Raoul
Published in
Communications in Mathematical Physics

We investigate Fuchsian equations arising in the context of 2-dimensional conformal field theory (CFT) and we apply the Katz theory of Fucshian rigid systems to solve some of these equations. We show that the Katz theory provides a precise mathematical framework to answer the question whether the fusion rules of degenerate primary fields are enough...

Lauria, Edoardo Meineri, Marco Trevisani, Emilio
Published in
Journal of High Energy Physics

We study the two-point function of local operators in the presence of a defect in a generic conformal field theory. We define two pairs of cross ratios, which are convenient in the analysis of the OPE in the bulk and defect channel respectively. The new coordinates have a simple geometric interpretation, which can be exploited to efficiently comput...