#
Publication search

with closed map as keyword

Wehrung, Friedrich

It is well known that the real spectrum of any commutative unital ring, and the ℓ-spectrum of any Abelian lattice-ordered group with order-unit, are all completely normal spectral spaces. We prove the following results: (1) Every real spectrum can be embedded, as a spectral subspace, into some ℓ-spectrum. (2) Not every real spectrum is an ℓ-spectru...

Wehrung, Friedrich

A compact topological space X is spectral if it is sober (i.e., every irreducible closed set is the closure of a unique singleton) and the compact open subsets of X form a basis of the topology of X, closed under finite intersections. Theorem. A topological space X is homeomorphic to the spectrum of some countable Abelian ℓ-group with unit (resp., ...

Dube, Themba Ighedo, Oghenetega
Published in
Mathematica Slovaca

An ideal I of a ring A is a z-ideal if whenever a, b ∈ A belong to the same maximal ideals of A and a ∈ I, then b ∈ I as well. On the other hand, an ideal J of A is a d-ideal if Ann2(a) ⊆ J for every a ∈ J. It is known that the lattices Z(L) and D(L) of the ring 𝓡L of continuous real-valued functions on a frame L, consisting of z-ideals and d-ideal...