Jung, Jong Soo

In this paper, we introduce two new iterative algorithms (one implicit and one explicit) for finding a common point of the set of zeros of an accretive operator and the set of fixed points of a nonexpansive mapping in a real uniformly convex Banach space having a uniformly Gâteaux differentiable norm. Then under suitable control conditions, we esta...

NICOLAO, G.DE FERRARI-TRECATE, G. PINZONI, S.
Published in
Automatica

Zeros of continuous-time linear periodic systems are defined and their properties investigated. Under the assumption that the system has uniform relative degree, the zero-dynamics of the system is characterized and a closed-form expression of the blocking inputs is derived. This leads to the definition of zeros as unobservable characteristic expone...

Veronese, Daniel Oliveira

Given a pair of real sequences, where one of them is a positive chain sequence, we can associate a sequence of polynomials which satisfy a three term recurrence formula and such that the zeros of these polynomials are simple and lie on the unit circle. In this manuscript, we show that, starting from this three term recurrence formula, it is always ...

Veronese, Daniel Oliveira

Given a pair of real sequences, where one of them is a positive chain sequence, we can associate a sequence of polynomials which satisfy a three term recurrence formula and such that the zeros of these polynomials are simple and lie on the unit circle. In this manuscript, we show that, starting from this three term recurrence formula, it is always ...

Veronese, Daniel Oliveira

Given a pair of real sequences, where one of them is a positive chain sequence, we can associate a sequence of polynomials which satisfy a three term recurrence formula and such that the zeros of these polynomials are simple and lie on the unit circle. In this manuscript, we show that, starting from this three term recurrence formula, it is always ...

Veronese, Daniel Oliveira

Dado um par de sequências reais, sendo uma delas sequência encadeada positiva, podemos considerar uma sequência de polinômios que satisfazem uma relação de recorrência de três termos, de tal modo que os zeros destes polinômios sejam simples e estejam sobre o círculo unitário. Neste trabalho mostramos que é possível obter, a partir dessa fórmula de ...

Veronese, Daniel Oliveira

Given a pair of real sequences, where one of them is a positive chain sequence, we can associate a sequence of polynomials which satisfy a three term recurrence formula and such that the zeros of these polynomials are simple and lie on the unit circle. In this manuscript, we show that, starting from this three term recurrence formula, it is always ...

Botta, Vanessa Bracciali, Cleonice F. Pereira, Junior A.

The purpose of this paper is twofold. Firstly we investigate the distribution, simplicity and monotonicity of the zeros around the unit circle and real line of the real self-reciprocal polynomials Rn(λ)(z)=1+λ(z+z2+...+zn-1)+zn, n≥. 2 and λ∈R. Secondly, as an application of the first results we give necessary and sufficient conditions to guarantee ...

Area, Iván Dimitrov, Dimitar K. Godoy, Eduardo Paschoa, Vanessa
Published in
Numerical Algorithms

Sharp bounds for the zeros of symmetric Kravchuk polynomials Kn(x;M) are obtained. The results provide a precise quantitative meaning of the fact that Kravchuk polynomials converge uniformly to Hermite polynomials, as M tends to infinity. They show also how close the corresponding zeros of two polynomials from these sequences of classical orthogona...

Bracciali, Cleonice Fátima Moreno-Balcazar, Juan José

We obtain the asymptotic behavior of the zeros of a class of generalized hypergeometric polynomials. For this purpose, we make use of a Mehler-Heine type formula for these polynomials. We illustrate these results with numerical experiments and some figures. / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Fundação de Amparo ...