Contributions to Random Forests Methods for several Data Analysis Problems
This dissertation deals with Bayesian nonparametric statistics, in particular nonparametric mixture models. The manuscript is divided into a general introduction and three parts on rather different aspects of mixtures approaches (sampling, asymptotic, inverse problem). In mixture models, the parameter to infer from the data is a function. We set a ...
This thesis is divided in two parts on rather different aspects of Bayesian statistics. In the first part, we deal with frequentist (asymptotic) properties of posterior distributions for parameters which belong to the space of real square sommable sequences. In the second part, we deal with nonparametric approaches modelling species data and the di...
La thèse est divisée en deux parties portant sur deux aspects relativement différents des approches bayésiennes non-paramétriques. Dans la première partie, nous nous intéressons aux propriétés fréquentistes (asymptotiques) de lois a posteriori pour des paramètres appartenant à l'ensemble des suites réelles de carré sommable. Dans la deuxième partie...
FR
En optique quantique, la reconstruction de l'état quantique (fonction de Wigner ou matrice de densité infini-dimensionnelle) d'un faisceau de lumière correspond en statistique à un problème inverse trés mal posé. Premièrement, nous proposons des estimateurs de la matrice de densité basés sur les fonctions \textit{pattern} et des estimateurs à noyau...
Cette thèse se concentre sur le modèle de classification binaire. Etant donné $n$ couples de variables aléatoires indépendantes et identiquement distribuées (i.i.d.) $(X_i,Y_i)$, $i=1,\ldots ,n$ de loi $P$, on cherche à prédire la classe $Y\in\{-1,+1\}$ d'une nouvelle entrée $X$ où $(X,Y)$ est de loi $P$. La règle de Bayes, notée $f^*$, minimise l'...
PARIS-BIUSJ-Thèses (751052125) / Sudoc / PARIS-BIUSJ-Physique recherche (751052113) / Sudoc / Sudoc / France / FR
FR
FR