Chen, Xiaojun Eshmatov, Farkhod Gan, Wee Liang

Let M be a smooth, simply-connected, closed oriented manifold, and LM the free loop space of M. Using a Poincaré duality model for M, we show that the reduced equivariant homology of LM has the structure of a Lie bialgebra, and we construct a Hopf algebra which quantizes the Lie bialgebra.

Chen, Xiaojun Eshmatov, Farkhod Gan, Wee Liang

Let M be a smooth, simply-connected, closed oriented manifold, and LM the free loop space of M. Using a Poincaré duality model for M, we show that the reduced equivariant homology of LM has the structure of a Lie bialgebra, and we construct a Hopf algebra which quantizes the Lie bialgebra.

Chen, Xiaojun Eshmatov, Farkhod Gan, Wee Liang

Let M be a smooth, simply-connected, closed oriented manifold, and LM the free loop space of M. Using a Poincaré duality model for M, we show that the reduced equivariant homology of LM has the structure of a Lie bialgebra, and we construct a Hopf algebra which quantizes the Lie bialgebra.

Chen, Xiaojun Eshmatov, Farkhod Gan, Wee Liang

Let M be a smooth, simply-connected, closed oriented manifold, and LM the free loop space of M. Using a Poincaré duality model for M, we show that the reduced equivariant homology of LM has the structure of a Lie bialgebra, and we construct a Hopf algebra which quantizes the Lie bialgebra.

Chen, Xiaojun Eshmatov, Farkhod Gan, Wee Liang

Let M be a smooth, simply-connected, closed oriented manifold, and LM the free loop space of M. Using a Poincaré duality model for M, we show that the reduced equivariant homology of LM has the structure of a Lie bialgebra, and we construct a Hopf algebra which quantizes the Lie bialgebra.

Chen, Xiaojun Eshmatov, Farkhod Gan, Wee Liang

Let M be a smooth, simply-connected, closed oriented manifold, and LM the free loop space of M. Using a Poincaré duality model for M, we show that the reduced equivariant homology of LM has the structure of a Lie bialgebra, and we construct a Hopf algebra which quantizes the Lie bialgebra.

Chen, Xiaojun Eshmatov, Farkhod Gan, Wee Liang

Let M be a smooth, simply-connected, closed oriented manifold, and LM the free loop space of M. Using a Poincaré duality model for M, we show that the reduced equivariant homology of LM has the structure of a Lie bialgebra, and we construct a Hopf algebra which quantizes the Lie bialgebra.

Chen, Xiaojun Eshmatov, Farkhod Gan, Wee Liang

Let M be a smooth, simply-connected, closed oriented manifold, and LM the free loop space of M. Using a Poincaré duality model for M, we show that the reduced equivariant homology of LM has the structure of a Lie bialgebra, and we construct a Hopf algebra which quantizes the Lie bialgebra.

Chen, Xiaojun Eshmatov, Farkhod Gan, Wee Liang

Let M be a smooth, simply-connected, closed oriented manifold, and LM the free loop space of M. Using a Poincaré duality model for M, we show that the reduced equivariant homology of LM has the structure of a Lie bialgebra, and we construct a Hopf algebra which quantizes the Lie bialgebra.

Chen, Xiaojun Eshmatov, Farkhod Gan, Wee Liang

Let M be a smooth, simply-connected, closed oriented manifold, and LM the free loop space of M. Using a Poincaré duality model for M, we show that the reduced equivariant homology of LM has the structure of a Lie bialgebra, and we construct a Hopf algebra which quantizes the Lie bialgebra.