Gaussian Graphical models (GGM) are widely used to estimate network structure in domains ranging from biology to finance. In practice, data is often corrupted by latent confounders which biases inference of the underlying true graphical structure. In this paper, we compare and contrast two strategies for inference in graphical models with latent co...
In public health research an increasing number of studies is conducted in which intensive longitudinal data is collected in an experience sampling or a daily diary design. Typically, the resulting data is analyzed with a mixed-effects model or mixed-effects location scale model because they allow one to examine a host of interesting longitudinal re...
This paper discusses nonparametric identification and estimation of the causal effect of a treatment in the presence of confounding, competing risks and random right-censoring. Our identification strategy is based on an instrumental variable. We show that the competing risks model generates a nonparametric quantile instrumental regression problem. ...
Teunis, Peter FMWang, YukeAiemjoy, KristenKretzschmar, MirjamAerts, Marc
This study presents a novel approach for inferring the incidence of infections by employing a quantitative model of the serum antibody response. Current methodologies often overlook the cumulative effect of an individual's infection history, making it challenging to obtain a marginal distribution for antibody concentrations. Our proposed approach l...
In this paper we focus on identifying differentially activated brain regions using a light sheet fluorescence microscopy—a recently developed technique for whole-brain imaging. Most existing statistical methods solve this problem by partitioning the brain regions into two classes: significantly and nonsignificantly activated. However, for the brain...