Ennaji, Hamza
In this thesis we propose some variational methods for the mathematical and numerical analysis of a class of HJ equations. Thanks to the metric character of these equations, the set of subsolution corresponds to the set of 1-Lipschitz functions with respect to the Finsler metric associated to the Hamiltonian. Equivalently, it corresponds to the set...
Maurer, Daniel Ju, Yong Chul Breuß, Michael Bruhn, Andrés
Published in
International Journal of Computer Vision
Shape from shading (SfS) and stereo are two fundamentally different strategies for image-based 3-D reconstruction. While approaches for SfS infer the depth solely from pixel intensities, methods for stereo are based on a matching process that establishes correspondences across images. This difference in approaching the reconstruction problem yields...
Cholewiak, Steven Vergne, Romain Kunsberg, Benjamin Zucker, Steven Fleming, Roland
The visual system can infer 3D shape from orientation flows arising from both texture and shading patterns. However, these two types of flows provide fundamentally different information about surface structure. Texture flows, when derived from distinct elements, mainly signal first-order features (surface slant), whereas shading flow orientations p...
Barron, Jonathan Tilton
A fundamental problem in computer vision is that of inferring the intrinsic, 3D structure of the world from flat, 2D images of that world. Traditional methods for recovering scene properties such as shape, reflectance, or illumination rely on multiple observations of the same scene to overconstrain the problem. Recovering these same properties from...
Barron, Jonathan Tilton
A fundamental problem in computer vision is that of inferring the intrinsic, 3D structure of the world from flat, 2D images of that world. Traditional methods for recovering scene properties such as shape, reflectance, or illumination rely on multiple observations of the same scene to overconstrain the problem. Recovering these same properties from...
Barron, Jonathan Tilton
A fundamental problem in computer vision is that of inferring the intrinsic, 3D structure of the world from flat, 2D images of that world. Traditional methods for recovering scene properties such as shape, reflectance, or illumination rely on multiple observations of the same scene to overconstrain the problem. Recovering these same properties from...
Barron, Jonathan Tilton
A fundamental problem in computer vision is that of inferring the intrinsic, 3D structure of the world from flat, 2D images of that world. Traditional methods for recovering scene properties such as shape, reflectance, or illumination rely on multiple observations of the same scene to overconstrain the problem. Recovering these same properties from...
Barron, Jonathan Tilton
A fundamental problem in computer vision is that of inferring the intrinsic, 3D structure of the world from flat, 2D images of that world. Traditional methods for recovering scene properties such as shape, reflectance, or illumination rely on multiple observations of the same scene to overconstrain the problem. Recovering these same properties from...
Barron, Jonathan Tilton
A fundamental problem in computer vision is that of inferring the intrinsic, 3D structure of the world from flat, 2D images of that world. Traditional methods for recovering scene properties such as shape, reflectance, or illumination rely on multiple observations of the same scene to overconstrain the problem. Recovering these same properties from...
Barron, Jonathan Tilton
A fundamental problem in computer vision is that of inferring the intrinsic, 3D structure of the world from flat, 2D images of that world. Traditional methods for recovering scene properties such as shape, reflectance, or illumination rely on multiple observations of the same scene to overconstrain the problem. Recovering these same properties from...