Christensen, Jesper Bjerge Koefoed, Jacob Gade Rottwitt, Karsten McKinstrie, C. J.

The future of integrated quantum photonics relies heavily on the ability to engineer refined methods for preparing the quantum states needed to implement various quantum protocols. An important example of such states is quantum-correlated photon pairs, which can be efficiently generated using spontaneous nonlinear processes in integrated microring-...

Christensen, Jesper Bjerge Koefoed, Jacob Gade Rottwitt, Karsten McKinstrie, C. J.

The future of integrated quantum photonics relies heavily on the ability to engineer refined methods for preparing the quantum states needed to implement various quantum protocols. An important example of such states is quantum-correlated photon pairs, which can be efficiently generated using spontaneous nonlinear processes in integrated microring-...

Christensen, Jesper Bjerge Koefoed, Jacob Gade Rottwitt, Karsten McKinstrie, C. J.

The future of integrated quantum photonics relies heavily on the ability to engineer refined methods for preparing the quantum states needed to implement various quantum protocols. An important example of such states is quantum-correlated photon pairs, which can be efficiently generated using spontaneous nonlinear processes in integrated microring-...

Christensen, Jesper Bjerge Koefoed, Jacob Gade Rottwitt, Karsten McKinstrie, C. J.

The future of integrated quantum photonics relies heavily on the ability to engineer refined methods for preparing the quantum states needed to implement various quantum protocols. An important example of such states is quantum-correlated photon pairs, which can be efficiently generated using spontaneous nonlinear processes in integrated microring-...

Christensen, Jesper Bjerge Koefoed, Jacob Gade Rottwitt, Karsten McKinstrie, C. J.

The future of integrated quantum photonics relies heavily on the ability to engineer refined methods for preparing the quantum states needed to implement various quantum protocols. An important example of such states is quantum-correlated photon pairs, which can be efficiently generated using spontaneous nonlinear processes in integrated microring-...

Christensen, Jesper Bjerge Koefoed, Jacob Gade Rottwitt, Karsten McKinstrie, C. J.

The future of integrated quantum photonics relies heavily on the ability to engineer refined methods for preparing the quantum states needed to implement various quantum protocols. An important example of such states is quantum-correlated photon pairs, which can be efficiently generated using spontaneous nonlinear processes in integrated microring-...

Christensen, Jesper Bjerge Koefoed, Jacob Gade Rottwitt, Karsten McKinstrie, C. J.

The future of integrated quantum photonics relies heavily on the ability to engineer refined methods for preparing the quantum states needed to implement various quantum protocols. An important example of such states is quantum-correlated photon pairs, which can be efficiently generated using spontaneous nonlinear processes in integrated microring-...

Christensen, Jesper Bjerge Koefoed, Jacob Gade Rottwitt, Karsten McKinstrie, C. J.

The future of integrated quantum photonics relies heavily on the ability to engineer refined methods for preparing the quantum states needed to implement various quantum protocols. An important example of such states is quantum-correlated photon pairs, which can be efficiently generated using spontaneous nonlinear processes in integrated microring-...

Christensen, Jesper Bjerge Koefoed, Jacob Gade Rottwitt, Karsten McKinstrie, C. J.

The future of integrated quantum photonics relies heavily on the ability to engineer refined methods for preparing the quantum states needed to implement various quantum protocols. An important example of such states is quantum-correlated photon pairs, which can be efficiently generated using spontaneous nonlinear processes in integrated microring-...

Aktas, Djeylan Fedrici, Bruno Kaiser, Florian Lunghi, Tommaso Labonté, Laurent Tanzilli, Sébastien

Granting information privacy is of crucial importance in our society, notably in fiber communication networks. Quantum cryptography provides a unique means to establish, at remote locations, identical strings of genuine random bits, with a level of secrecy unattainable using classical resources. However, several constraints, such as non-optimized p...