Joly, Alexis Affouard, Antoine Chouet, Mathias Deneu, Benjamin Estopinan, Joaquim Goëau, Hervé Gresse, Hugo Lombardo, Jean-Christophe Lorieul, Titouan Munoz, François
...
AI-based models for IUCN conservation status prediction (see Fig 1) Digitized Herbarium analysis (phenology, traits, identification) Plant disease recognition Agro-ecological robots (weeds detection and identification, mixed seeds) Biodiversity data quality and uncertainty New AI-based services for citizen science (cos4cloud project)
Affouard, Antoine Chouet, Mathias Lombardo, Jean-Christophe Gresse, Hugo Goëau, Hervé Lorieul, Titouan Bonnet, Pierre Joly, Alexis
[email protected] is a citizen observatory that relies on artificial intelligence (AI) technologies to help people identify plants with their smartphones (Joly 2014). Over the past few years, [email protected] has become one of the largest plant biodiversity observatories in the world with several million contributors (Bonnet 2020b). Based on user demands, a set of ...
Molino, Jean-François
Pour observer l’évolution des écosystèmes sous l’effet des changements globaux et apprendre à les gérer au mieux, il faut disposer d’informations actualisées sur la répartition des espèces, et notamment des espèces végétales.
Bonnet, Pierre Joly, Alexis Goëau, Hervé Lombardo, Jean-Christophe Affouard, Antoine Wang, Sen Knaff, Rémi Molino, Jean-François Barthélémy, Daniel
[email protected] is a free web and mobile platform dedicated to automated, image-based plant identification and to collaborative gathering of plant observations (http://identify.plantnet-project.org/). It relies on crowdsourcing approaches and machine learning techniques for data production, validation and enrichment. The initial version of the application...