Atomic layer deposition (ALD) combined with self-assembled monolayer (SAM) passivation allows selective deposition on patterned substrates at the nanoscale, enabling bottom-up material fabrication for various applications. Selective chemisorption of 1-octadecanethiol (ODT) on Cu over SiO2 is exploited to achieve area selective deposition (ASD). Alt...
Organic solar cells (OSCs) based on nonfullerene acceptors (NFAs) have made significant breakthrough in their device performance, now achieving a power conversion efficiency of ≈18% for single junction devices, driven by the rapid development in their molecular design and device engineering in recent years. However, achieving long‐term stability re...
The ability to engineer quantum-cascade-lasers (QCLs) with ultrabroad gain spectra, and with a full compensation of the group velocity dispersion, at terahertz (THz) frequencies, is key for devising monolithic and miniaturized optical frequency-comb-synthesizers (FCSs) in the far-infrared. In THz QCLs four-wave mixing, driven by intrinsic third-ord...
The authors report an ammonia‐assisted in situ cation‐exchange method for the synthesis of dodecagon N‐doped PdCoNi carbon‐based nanosheets (Pd‐e‐NiCo‐PBA‐C) and explore the catalytic performance. Pd‐e‐NiCo‐PBA‐C exerts extremely low overpotential and Tafel slope for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) both in acid...
He, QEisner, FDPearce, DHodsden, TRezasoltani, EMedranda, DFei, ZNelson, JHeeney, M
In this work, we designed and synthesized two novel perylene diimide (PDI) tetramers based on a tetrathienylethene core, named TTE-PDI4 and FTTE-PDI4, and investigated their application as non-fullerene acceptors for organic photovoltaics. The free rotation of PDIs and adjacent thiophene units renders TTE-PDI4 with a highly twisted molecular geomet...
Correction for 'FRET-based intracellular investigation of nanoprodrugs toward highly efficient anticancer drug delivery' by Farsai Taemaitree et al., Nanoscale, 2020, 12, 16710-16715, DOI: 10.1039/D0NR04910G. / status: published