Multi-lab study on the pure-gas permeation of commercial polysulfone (PSf) membranes: Measurement standards and best pra...
...
status: published
status: published
Polymers of intrinsic microporosity have attracted comprehensive attention in membrane-mediated gas separation because of their rigid and contorted structure that facilitates well-defined microporosity for fast and selective gas transport. We report a new macromolecular design synthesizes semi-ladder and fully-ladder polymers of intrinsic microporo...
Polymers of intrinsic microporosity have attracted comprehensive attention in membrane-mediated gas separation because of their rigid and contorted structure that facilitates well-defined microporosity for fast and selective gas transport. We report a new macromolecular design synthesizes semi-ladder and fully-ladder polymers of intrinsic microporo...
This paper reports two new series of benzimidazole functionalized polyimides and ionic polyimides for highly selective membranes with great potential for natural gas sweetening. It has been demonstrated that both the -NH groups in the benzimidazole moieties and the corresponding ionic groups after N-quaternization tighten the microporous structure ...
This paper reports two new series of benzimidazole functionalized polyimides and ionic polyimides for highly selective membranes with great potential for natural gas sweetening. It has been demonstrated that both the -NH groups in the benzimidazole moieties and the corresponding ionic groups after N-quaternization tighten the microporous structure ...
© 2018 Elsevier Ltd. All rights reserved. The commercial polyetherimide sulfone polymer Extem was blended with polyethersulfone (PES) to achieve a new, highly selective membrane for CO2/N2 separation in order to allow for a breakthrough in carbon capture applications. The miscibility and molecular interaction between PES and Extem for blend composi...
Fabricated by high-pressure or supercritical CO2 gas dissolution foaming process, nanocellular and microcellular polymer foams based on poly(methyl methacrylate) (PMMA homopolymer) present a controlled nucleation mechanism by the addition of a methylmethacrylate-butylacrylate-methylmethacrylate block copolymer (MAM), leading to defined nanocellular...
CNPq [563674/2008-3]
CNPq [563674/2008-3]