Cette thèse se situe en combinatoire algébrique, et plus particulièrement en théorie combinatoire des représentations linéaires des monoïdes finis.Rappelons qu'un monoïde est un ensemble fini M muni d'une multiplication et d'un élément neutre, et qu'une représentation de M est un morphisme de M dans le monoïde des matrices $M_n(ck)$ où $ck$ est un ...
The separation problem, for a class S of languages, is the following: given two input languages, does there exist a language in S that contains the first language and that is disjoint from the second langage ?For regular input languages, the separation problem for a class S subsumes the classical membership problem for this class, and provides more...
Cette thèse se place dans la lignée des extensions quantitatives du modèle des automates finis. La théorie des fonctions de coût régulières, développée par Thomas Colcombet à la suite des travaux avec Mikolaj Bojanczyk, propose un cadre satisfaisant pour étendre de manière quantitative un large spectre de résultats portant sur les langages régulier...
Ce travail porte sur les propriétés algébriques des groupes de tresses d'Artin et des systèmes autodistributifs à gauche, des objets intimement liés. La première partie est une analyse syntaxique de la forme normale de Bressaud pour les tresses. Le principal résultat est une traduction en termes de systèmes de réécriture de l'existence de la forme ...
Une tresse est une classe d'équivalence de mots de tresse. Diverses formes normales sur les tresses ont été décrites dans la littérature, c'est-à-dire, divers moyens de sélection, pour toute tresse, d'un mot de tresse distingué la représentant. Définie de façon naturelle sur les monoïdes de tresses de Birman-Ko-Lee (ou duaux), la forme normale tour...