Covanov, Svyatoslav

Since 1960 and the result of Karatsuba, we know that the complexity of the multiplication (of integers or polynomials) is sub-quadratic: given a ring R, the product in R[X] of polynomials a_0 + a_1 X and b_0 + b_1 X, for any a_0, a_1, b_0 and b_1 in R, can be computed with three and not four multiplications over R: (a_0 + a_1X)(b_0 + b_1X) = m_0 + ...

Covanov, Svyatoslav

Since 1960 and the result of Karatsuba, we know that the complexity of the multiplication (of integers or polynomials) is sub-quadratic: given a ring R, the product in R[X] of polynomials a_0 + a_1 X and b_0 + b_1 X, for any a_0, a_1, b_0 and b_1 in R, can be computed with three and not four multiplications over R: (a_0 + a_1X)(b_0 + b_1X) = m_0 + ...

Covanov, Svyatoslav

Since 1960 and the result of Karatsuba, we know that the complexity of the multiplication (of integers or polynomials) is sub-quadratic: given a ring R, the product in R[X] of polynomials a_0 + a_1 X and b_0 + b_1 X, for any a_0, a_1, b_0 and b_1 in R, can be computed with three and not four multiplications over R: (a_0 + a_1X)(b_0 + b_1X) = m_0 + ...

Covanov, Svyatoslav

Since 1960 and the result of Karatsuba, we know that the complexity of the multiplication (of integers or polynomials) is sub-quadratic: given a ring R, the product in R[X] of polynomials a_0 + a_1 X and b_0 + b_1 X, for any a_0, a_1, b_0 and b_1 in R, can be computed with three and not four multiplications over R: (a_0 + a_1X)(b_0 + b_1X) = m_0 + ...

Covanov, Svyatoslav

Since 1960 and the result of Karatsuba, we know that the complexity of the multiplication (of integers or polynomials) is sub-quadratic: given a ring R, the product in R[X] of polynomials a_0 + a_1 X and b_0 + b_1 X, for any a_0, a_1, b_0 and b_1 in R, can be computed with three and not four multiplications over R: (a_0 + a_1X)(b_0 + b_1X) = m_0 + ...

Covanov, Svyatoslav

Since 1960 and the result of Karatsuba, we know that the complexity of the multiplication (of integers or polynomials) is sub-quadratic: given a ring R, the product in R[X] of polynomials a_0 + a_1 X and b_0 + b_1 X, for any a_0, a_1, b_0 and b_1 in R, can be computed with three and not four multiplications over R: (a_0 + a_1X)(b_0 + b_1X) = m_0 + ...

Covanov, Svyatoslav

Since 1960 and the result of Karatsuba, we know that the complexity of the multiplication (of integers or polynomials) is sub-quadratic: given a ring R, the product in R[X] of polynomials a_0 + a_1 X and b_0 + b_1 X, for any a_0, a_1, b_0 and b_1 in R, can be computed with three and not four multiplications over R: (a_0 + a_1X)(b_0 + b_1X) = m_0 + ...

Covanov, Svyatoslav

Since 1960 and the result of Karatsuba, we know that the complexity of the multiplication (of integers or polynomials) is sub-quadratic: given a ring R, the product in R[X] of polynomials a_0 + a_1 X and b_0 + b_1 X, for any a_0, a_1, b_0 and b_1 in R, can be computed with three and not four multiplications over R: (a_0 + a_1X)(b_0 + b_1X) = m_0 + ...

Covanov, Svyatoslav

Since 1960 and the result of Karatsuba, we know that the complexity of the multiplication (of integers or polynomials) is sub-quadratic: given a ring R, the product in R[X] of polynomials a_0 + a_1 X and b_0 + b_1 X, for any a_0, a_1, b_0 and b_1 in R, can be computed with three and not four multiplications over R: (a_0 + a_1X)(b_0 + b_1X) = m_0 + ...

Xu, Yichun Yao, Hui Li, Pei Xu, Wenbin Zhang, Junbin Lv, Lulu Teng, Haijun Guo, Zhiliang Zhao, Huiqing Hou, Gang
...
Published in
Cellular Physiology and Biochemistry

Background/Aims: An adequate matrix production of nucleus pulposus (NP) cells is an important tissue engineering-based strategy to regenerate degenerative discs. Here, we mainly aimed to investigate the effects and mechanism of mechanical compression (i.e., static compression vs. dynamic compression) on the matrix synthesis of three-dimensional (3D...