Christensen, Jesper Bjerge Koefoed, Jacob Gade Rottwitt, Karsten McKinstrie, C. J.

The future of integrated quantum photonics relies heavily on the ability to engineer refined methods for preparing the quantum states needed to implement various quantum protocols. An important example of such states is quantum-correlated photon pairs, which can be efficiently generated using spontaneous nonlinear processes in integrated microring-...

Christensen, Jesper Bjerge Koefoed, Jacob Gade Rottwitt, Karsten McKinstrie, C. J.

The future of integrated quantum photonics relies heavily on the ability to engineer refined methods for preparing the quantum states needed to implement various quantum protocols. An important example of such states is quantum-correlated photon pairs, which can be efficiently generated using spontaneous nonlinear processes in integrated microring-...

Christensen, Jesper Bjerge Koefoed, Jacob Gade Rottwitt, Karsten McKinstrie, C. J.

The future of integrated quantum photonics relies heavily on the ability to engineer refined methods for preparing the quantum states needed to implement various quantum protocols. An important example of such states is quantum-correlated photon pairs, which can be efficiently generated using spontaneous nonlinear processes in integrated microring-...

Christensen, Jesper Bjerge Koefoed, Jacob Gade Rottwitt, Karsten McKinstrie, C. J.

The future of integrated quantum photonics relies heavily on the ability to engineer refined methods for preparing the quantum states needed to implement various quantum protocols. An important example of such states is quantum-correlated photon pairs, which can be efficiently generated using spontaneous nonlinear processes in integrated microring-...

Christensen, Jesper Bjerge Koefoed, Jacob Gade Rottwitt, Karsten McKinstrie, C. J.

The future of integrated quantum photonics relies heavily on the ability to engineer refined methods for preparing the quantum states needed to implement various quantum protocols. An important example of such states is quantum-correlated photon pairs, which can be efficiently generated using spontaneous nonlinear processes in integrated microring-...

Christensen, Jesper Bjerge Koefoed, Jacob Gade Rottwitt, Karsten McKinstrie, C. J.

The future of integrated quantum photonics relies heavily on the ability to engineer refined methods for preparing the quantum states needed to implement various quantum protocols. An important example of such states is quantum-correlated photon pairs, which can be efficiently generated using spontaneous nonlinear processes in integrated microring-...

Christensen, Jesper Bjerge Koefoed, Jacob Gade Rottwitt, Karsten McKinstrie, C. J.

The future of integrated quantum photonics relies heavily on the ability to engineer refined methods for preparing the quantum states needed to implement various quantum protocols. An important example of such states is quantum-correlated photon pairs, which can be efficiently generated using spontaneous nonlinear processes in integrated microring-...

Christensen, Jesper Bjerge Koefoed, Jacob Gade Rottwitt, Karsten McKinstrie, C. J.

The future of integrated quantum photonics relies heavily on the ability to engineer refined methods for preparing the quantum states needed to implement various quantum protocols. An important example of such states is quantum-correlated photon pairs, which can be efficiently generated using spontaneous nonlinear processes in integrated microring-...

Christensen, Jesper Bjerge Koefoed, Jacob Gade Rottwitt, Karsten McKinstrie, C. J.

The future of integrated quantum photonics relies heavily on the ability to engineer refined methods for preparing the quantum states needed to implement various quantum protocols. An important example of such states is quantum-correlated photon pairs, which can be efficiently generated using spontaneous nonlinear processes in integrated microring-...

Koefoed, Jacob Gade Christensen, Jesper Bjerge Rottwitt, Karsten

We present a general model, based on a Hamiltonian approach, for the joint quantum state of photon pairs generated through pulsed spontaneous four-wave mixing, including nonlinear phase modulation and a finite material response time. For the case of a silica fiber, it is found that the pair-production rate depends weakly on the waveguide temperatur...