We are interested in connections between symmetric functions and the enumeration of maps, which are graphs drawn on surfaces, not necessarily orientable. We consider generating series of some families of maps with colored vertices, including bipartite maps and constellations. In these generating series, some properties of the combinatorial structur...
Sur une variété kählérienne compacte connexe de dimension $2m$, $\omega $ étant la forme de Kähler, $\Omega $ une forme volume donnée dans $[\omega ]^m$ et $k$ un entier $1
Trois thèmes ont été poursuivis dans la thèse : -On introduit les fonctions symétriques non commutatives dans le cadre des extensions de Ore. On généralise les résultats obtenus par Gelfand, Retakh et Wilson. Notre méthode est en outre plus naturelle et évite l utilisation des quasi déterminants. -On montre que les factorisations des polynômes de W...
L'objet de cette thèse concerne les propriétés du groupe symétrique à travers deux problèmes. Le premier consiste à étudier l'action du groupe symétrique sur la fraction (...). En appliquant certaines opérations sur les graphes et les cartes, nous donnons des algorithmes et des formules combinatoires pour déterminer complètement la fraction réduite...
L'objet de cette thèse concerne les propriétés du groupe symétrique à travers deux problèmes. Le premier consiste à étudier l'action du groupe symétrique sur la fraction (...). En appliquant certaines opérations sur les graphes et les cartes, nous donnons des algorithmes et des formules combinatoires pour déterminer complètement la fraction réduite...
L'objet de cette thèse concerne les propriétés du groupe symétrique à travers deux problèmes. Le premier consiste à étudier l'action du groupe symétrique sur la fraction (...). En appliquant certaines opérations sur les graphes et les cartes, nous donnons des algorithmes et des formules combinatoires pour déterminer complètement la fraction réduite...