Henry, Morgane Maitre, Emmanuel Perrier, Valérie

This work deals with the resolution of the dynamic optimal transport (OT) problem between 1D or 2D images in the fluid mechanics framework of Benamou-Brenier [6]. The numerical resolution of this dynamic formulation of OT, despite the successful application of proximal methods [36] is still computationally demanding. This is partly due to a space-t...

Henry, Morgane Maitre, Emmanuel Perrier, Valérie

This work deals with the resolution of the dynamic optimal transport (OT) problem between 1D or 2D images in the fluid mechanics framework of Benamou-Brenier [6]. The numerical resolution of this dynamic formulation of OT, despite the successful application of proximal methods [36] is still computationally demanding. This is partly due to a space-t...

Henry, Morgane Maitre, Emmanuel Perrier, Valérie

This work deals with the resolution of the dynamic optimal transport (OT) problem between 1D or 2D images in the fluid mechanics framework of Benamou-Brenier [6]. The numerical resolution of this dynamic formulation of OT, despite the successful application of proximal methods [36] is still computationally demanding. This is partly due to a space-t...

Wang, Yan Rajamani, Rajesh Zemouche, Ali

This paper develops a robust gain-scheduled proportional–integral–derivative (PID) controller design method for a linear-parameter-varying (LPV) system with parametric uncertainty. It is recognized in the literature that the robust fixed-order controller design can be formulated as a feasibility problem of a bilinear matrix inequality (BMI) constra...

Wang, Yan Rajamani, Rajesh Zemouche, Ali

This paper develops a robust gain-scheduled proportional–integral–derivative (PID) controller design method for a linear-parameter-varying (LPV) system with parametric uncertainty. It is recognized in the literature that the robust fixed-order controller design can be formulated as a feasibility problem of a bilinear matrix inequality (BMI) constra...

Wang, Yan Rajamani, Rajesh Zemouche, Ali

This paper develops a robust gain-scheduled proportional–integral–derivative (PID) controller design method for a linear-parameter-varying (LPV) system with parametric uncertainty. It is recognized in the literature that the robust fixed-order controller design can be formulated as a feasibility problem of a bilinear matrix inequality (BMI) constra...

Bachir, Mohammed Fabre, Adrien Tapia-Garcia, Sebastian

We study the notion of {\it finitely determined functions} defined on a topological vector space $E$ equipped with a biorthogonal system. This notion will be used to obtain a necessary and sufficient condition for a convex function to attain a minimum at some point. An application to the Karush-Kuhn-Tucker theorem will be given. For real-valued con...

Bachir, Mohammed Fabre, Adrien Tapia-Garcia, Sebastian

We study the notion of {\it finitely determined functions} defined on a topological vector space $E$ equipped with a biorthogonal system. This notion will be used to obtain a necessary and sufficient condition for a convex function to attain a minimum at some point. An application to the Karush-Kuhn-Tucker theorem will be given. For real-valued con...

Bachir, Mohammed Fabre, Adrien Tapia-Garcia, Sebastian

We study the notion of {\it finitely determined functions} defined on a topological vector space $E$ equipped with a biorthogonal system. This notion will be used to obtain a necessary and sufficient condition for a convex function to attain a minimum at some point. An application to the Karush-Kuhn-Tucker theorem will be given. For real-valued con...

Bachir, Mohammed Fabre, Adrien Tapia-Garcia, Sebastian

We study the notion of {\it finitely determined functions} defined on a topological vector space $E$ equipped with a biorthogonal system. This notion will be used to obtain a necessary and sufficient condition for a convex function to attain a minimum at some point. An application to the Karush-Kuhn-Tucker theorem will be given. For real-valued con...