## Cayley graphs of basic algebraic structures

We present simple graph-theoretic characterizations for the Cayley graphs of monoids, right-cancellative monoids, left-cancellative monoids, and groups.

We present simple graph-theoretic characterizations for the Cayley graphs of monoids, right-cancellative monoids, left-cancellative monoids, and groups.

Published in Quantum Information Processing

The finite dihedral group generated by one rotation and one flip is the simplest case of the non-Abelian group. Cayley graphs are diagrammatic counterparts of groups. In this paper, much attention is given to the Cayley graph of the dihedral group. Considering the characteristics of the elements in the dihedral group, we conduct the model of discre...

Let G = (V, E) be a connected graph, let x ∈ V (G) be a vertex and e = yz ∈ E(G) be an edge. The distance between the vertex x and the edge e is given by d G (x, e) = min{d G (x, y), d G (x, z)}. A vertex t ∈ V (G) distinguishes two edges e, f ∈ E(G) if d G (t, e) = d G (t, f). A set R ⊆ V (G) is an edge metric generator for G if every two edges of...

We present simple graph-theoretic characterizations of Cayley graphs for left-cancellative monoids, groups, left-quasigroups and quasigroups. We show that these characterizations are effective for the end-regular graphs of finite degree.

Published in Journal of Algebraic Combinatorics

A complete classification is given of 2-distance-transitive circulants, which shows that a 2-distance-transitive circulant is a cycle, a Paley graph of prime order, a regular complete multipartite graph, or a regular complete bipartite graph of order twice an odd integer minus a 1-factor.

Applying algebraic and combinatorics techniques to solve graph problems leads to the birthof algebraic and combinatorial graph theory. This thesis deals mainly with a crossroads questbetween the two theories, that is, the problem of constructing infinite families of expandergraphs.From a combinatorial point of view, expander graphs are sparse graph...

Published in Journal of Algebraic Combinatorics

A Frobenius group is a transitive permutation group that is not regular and such that only the identity fixes more than one point. A graphical Frobenius representation (GFR) of a Frobenius group G is a graph whose automorphism group, as a group of permutations of the vertex set, is isomorphic to G. The problem of classifying which Frobenius groups ...

Published in Journal of Algebraic Combinatorics

An automorphism α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} of a Cayley graph Cay(G,S)\documentclass[12pt]{minimal} \usepackage{amsmath} \u...

Published in Semigroup Forum

We define the notion of the partial order of ends of the Cayley graph of a semigroup. We prove that the structure of the ends of a semigroup is invariant under change of finite generating set and at the same time is inherited by subsemigroups and extensions of finite Rees index. We prove an analogue of Hopf’s Theorem, stating that an infinite group...

We give the classification of all (minimal) Cayley bipartite or perfect finite groups as well as finite graphs $Gamma$ for which there are only finitely many (minimal) Cayley $Gamma$-free groups.