DUTTA, S BHATTACHARJEE, D CHATTOPADHYAY, A

In this paper, we report efficient quantum circuits for integer multiplication using the Toom-Cook algorithm. By analyzing the recursive tree structure of the algorithm, we obtained a bound on the count of Toffoli gates and qubits. These bounds are further improved by employing reversible pebble games through uncomputing the intermediate results. T...

SATYAJIT, S SRINIVASAN, K BEHERA, BK PANIGRAHI, PK

Measurement-based quantum computation (MQC) is a leading paradigm for building a quantum computer. Cluster states being used in this context act as one-way quantum computers. Here, we consider Z-states as a type of highly entangled states like cluster states, which can be used for one-way or measurement-based quantum computation. We define Z-state ...

SATYAJIT, S SRINIVASAN, K BEHERA, BK PANIGRAHI, PK

Measurement-based quantum computation (MQC) is a leading paradigm for building a quantum computer. Cluster states being used in this context act as one-way quantum computers. Here, we consider Z-states as a type of highly entangled states like cluster states, which can be used for one-way or measurement-based quantum computation. We define Z-state ...

GHOSH, D AGARWAL, P PANDEY, P BEHERA, BK PANIGRAHI, PK

Construction of a fault-tolerant quantum computer remains a challenging problem due to unavoidable noise and fragile quantum states. However, this goal can be achieved by introducing quantum error-correcting codes. Here, we experimentally realize an automated error correction code and demonstrate the nondestructive discrimination of GHZ states in I...

SATYAJIT, S SRINIVASAN, K BEHERA, BK PANIGRAHI, PK

Measurement-based quantum computation (MQC) is a leading paradigm for building a quantum computer. Cluster states being used in this context act as one-way quantum computers. Here, we consider Z-states as a type of highly entangled states like cluster states, which can be used for one-way or measurement-based quantum computation. We define Z-state ...

DUTTA, S BHATTACHARJEE, D CHATTOPADHYAY, A

In this paper, we report efficient quantum circuits for integer multiplication using the Toom-Cook algorithm. By analyzing the recursive tree structure of the algorithm, we obtained a bound on the count of Toffoli gates and qubits. These bounds are further improved by employing reversible pebble games through uncomputing the intermediate results. T...

DUTTA, S BHATTACHARJEE, D CHATTOPADHYAY, A

In this paper, we report efficient quantum circuits for integer multiplication using the Toom-Cook algorithm. By analyzing the recursive tree structure of the algorithm, we obtained a bound on the count of Toffoli gates and qubits. These bounds are further improved by employing reversible pebble games through uncomputing the intermediate results. T...

SATYAJIT, S SRINIVASAN, K BEHERA, BK PANIGRAHI, PK

Measurement-based quantum computation (MQC) is a leading paradigm for building a quantum computer. Cluster states being used in this context act as one-way quantum computers. Here, we consider Z-states as a type of highly entangled states like cluster states, which can be used for one-way or measurement-based quantum computation. We define Z-state ...

SATYAJIT, S SRINIVASAN, K BEHERA, BK PANIGRAHI, PK

Measurement-based quantum computation (MQC) is a leading paradigm for building a quantum computer. Cluster states being used in this context act as one-way quantum computers. Here, we consider Z-states as a type of highly entangled states like cluster states, which can be used for one-way or measurement-based quantum computation. We define Z-state ...

GHOSH, D AGARWAL, P PANDEY, P BEHERA, BK PANIGRAHI, PK

Construction of a fault-tolerant quantum computer remains a challenging problem due to unavoidable noise and fragile quantum states. However, this goal can be achieved by introducing quantum error-correcting codes. Here, we experimentally realize an automated error correction code and demonstrate the nondestructive discrimination of GHZ states in I...