This work contains a systematic treatment of single particle synchrotron radiation and some application to realistic beams with given cross section area, divergence and energy spread. Standard theory relies on several approximations whose applicability limits and accuracy are often forgotten. We begin remarking that on the one hand, a paraxial appr...
The principal goal of the new facility is the construction of a worldwide unique and technically innovative accelerator system that will provide an extensive range of particle beams. Proton and antiproton beams will be available and ion beams of all chemical elements up to uranium will be produced with world-record intensities. The main employ of t...
The timing and RF-Field control systems in the Tesla Test Facility 2 and X-Ray FEL in the future require ultra low phase noise and timing jitter performance. The short term timing jitter should not exceed 100fs and the long term stability 1ps respectively. In order to meet these requirements a new master oscillator is under construction. The task o...
In an attempt to generate an ion beam with high current and high brightness for the design ion, the computer code KOBRA3-INP has been used to evaluate the extraction system, the DC post-acceleration system as well as the quadrupole transport beam line, and to study the behavior of the ion beam in the combined system. (orig.) / Available from TIB Ha...
Weyrich, K. (comp.)Gesellschaft fuer Schwerionenforschung m...
The following topics are dealt with: Laser plasma physics, plasma spectroscopy, beam interaction experiments, atomic and radiation physics, pulsed power applications, beam transport and accelerator research and development, properties of dense plasma, instabilities in beam-plasma interaction, beam transport in dense plasmas, short-pulse laser-matte...
We propose a technique for the production of attosecond X-ray pulses which is based on the use of X-ray SASE FEL combined with a femtosecond laser system. A few-cycle optical pulse from a Ti:sapphire laser interacts with the electron beam in a two-period undulator resonant to 800 nm wavelength and produces energy modulation within a slice of the el...
The superconducting Darmstadt linear accelerator (S-DALINAC) is a 130 MeV superconducting recirculating electron accelerator serving several nuclear and radiation physics experiments as well as driving an infrared free-electron laser. For the experiments an energy stability of 10"-"4 should be reached. Therefore noninvasive beam position monitors w...