Villeneuve, Léa
Les variétés horosphériques forment une sous-famille importante de variétés algébriques complexes, munies de l'action d'un groupe G réductif et connexe. Celles qui sont lisses de nombre de Picard 1 (non homogènes) sont regroupées en 5 familles et ont déjà été étudiées. Celles qui sont lisses de nombre de Picard 2 sont beaucoup plus nombreuses. Dans...
Peng, Keyao
In this thesis, we present several computations around MW motivic cohomology.We first compute the (total) Milnor-Witt motivic cohomology of the complement of a hyperplane arrangement in an affine space as an algebra with given generators and relations. We also obtain some corollaries by realization to classical cohomology.Secondly, we compute the M...
Tronto, Sebastiano
In this work we generalize the concept of injective module and develop a theory of divisibility for modules over a general ring, which provides a general and unified framework to study Kummer-like field extensions arising from commutative algebraic groups. With these tools we provide an effective bound for the degree of the field extensions arising...
Maltoni, Leonardo
The affine Hecke algebra has a remarkable commutative subalgebra corresponding to the coroot lattice inside the affine Weyl group. Its nature is encoded in the Bernstein presentation and reveals some fundamental representation theoretic properties of the Hecke algebra. We consider categorifications of this algebra, namely the diagrammatic category ...
Maltoni, Leonardo
The affine Hecke algebra has a remarkable commutative subalgebra corresponding to the coroot lattice inside the affine Weyl group. Its nature is encoded in the Bernstein presentation and reveals some fundamental representation theoretic properties of the Hecke algebra. We consider categorifications of this algebra, namely the diagrammatic category ...
Jacques, Simon
Soit G un groupe algébrique en type classique A, B ou D. Soit e un élément nilpotent de son algèbre de Lie et Z son centralisateur. On suppose la caractéristique nulle et l'ordre de e, vu comme endomorphisme, égal à deux. Cette thèse établit les propriétés de normalité, rationalité et Cohen-Macaulay pour toute adhérence Y d'une Z-orbite dans la var...
Demeio, Julian Lawrence
For a smooth algebraic variety X defined over a number field K, one could ask several questions about the abundance of its rational points. This thesis revolves, in particular, around the following three properties: Hilbert Property, weak approximation and strong approximation. The first concerns, more or less, the question of extending the Hilbert...
Vezier, Antoine
L'anneau de Cox d'une variété algébrique (satisfaisant des conditions naturelles) est un invariant très riche. Il est introduit par Cox en 1995 pour l'étude des variétés toriques, puis généralisé aux variétés normales par Arzhantsev, Berchtold et Hausen. Plus tard, Hu et Keel découvrent que les variétés normales dont l'anneau de Cox est de type fin...
Francini, Camille
Cette thèse comporte deux parties dans lesquelles les mesures de probabilités invariantes sur les solénoïdes jouent un rôle majeur. Les solénoïdes (c’est-à-dire les groupes abéliens compacts connexes de dimension topologique finie) sont des généralisations naturelles des tores usuels. Dans la première partie, nous étudions les groupes de transforma...
Frabetti, Alessandra Shestakov, Ivan
We consider a generalization of (pro)algebraic loops defined on general categories of algebras and the dual notion of a coloop bialgebra suitable to represent them as functors. Our main result is the proof that the natural loop of formal diffeomorphisms with associative coefficients is proalgebraic, and give a full description of the codivisions on...