Yin Lee, Chun Wong, Kin Yau
Published in
Statistical methods in medical research
Contemporary works in change-point survival models mainly focus on an unknown universal change-point shared by the whole study population. However, in some situations, the change-point is plausibly individual-specific, such as when it corresponds to the telomere length or menopausal age. Also, maximum-likelihood-based inference for the fixed change...
Wason, James Ms Seaman, Shaun R
Published in
Statistical methods in medical research
It is often of interest to explore how dose affects the toxicity and efficacy properties of a novel treatment. In oncology, efficacy is often assessed through response, which is defined by a patient having no new tumour lesions and their tumour size shrinking by 30%. Usually response and toxicity are analysed as binary outcomes in early phase trial...
Shan, Guogen
Published in
Statistical methods in medical research
Adaptive designs are increasingly used in clinical trials to assess the effectiveness of new drugs. For a single-arm study with a binary outcome, several adaptive designs were developed by using numerical search algorithms and the conditional power approach. The design based on numerical search algorithms is able to identify the global optimal desi...
Zhang, Ruotao Gatsonis, Constantine Steingrimsson, Jon Arni
Published in
Statistical methods in medical research
The uncertainty in predictions from deep neural network analysis of medical imaging is challenging to assess but potentially important to include in subsequent decision-making. Using data from diabetic retinopathy detection, we present an empirical evaluation of the role of model calibration in uncertainty-based referral, an approach that prioritiz...
Duputel, Benjamin Stallard, Nigel Montestruc, François Zohar, Sarah Ursino, Moreno
Published in
Statistical methods in medical research
Master protocol designs allow for simultaneous comparison of multiple treatments or disease subgroups. Master protocols can also be designed as seamless studies, in which two or more clinical phases are considered within the same trial. They can be divided into two categories: operationally seamless, in which the two phases are separated into two i...
Yi, Grace Y Chen, Li-Pang
Published in
Statistical methods in medical research
In the framework of causal inference, the inverse probability weighting estimation method and its variants have been commonly employed to estimate the average treatment effect. Such methods, however, are challenged by the presence of irrelevant pre-treatment variables and measurement error. Ignoring these features and naively applying the usual inv...
Langworthy, Benjamin Wu, Yujie Wang, Molin
Published in
Statistical methods in medical research
Propensity score matching is commonly used in observational studies to control for confounding and estimate the causal effects of a treatment or exposure. Frequently, in observational studies data are clustered, which adds to the complexity of using propensity score techniques. In this article, we give an overview of propensity score matching metho...
Graham, Emily Harbron, Chris Jaki, Thomas
Published in
Statistical methods in medical research
Combination therapies are becoming increasingly used in a range of therapeutic areas such as oncology and infectious diseases, providing potential benefits such as minimising drug resistance and toxicity. Sets of combination studies may be related, for example, if they have at least one treatment in common and are used in the same indication. In th...
Newer, Haidy A
Published in
Statistical methods in medical research
Clustered survival data frequently occurs in biomedical research fields and clinical trials. The log-rank tests are used for two independent samples of clustered data tests. We use the block Efron's biased-coin randomization (design) to assign patients to treatment groups in a clinical trial by forcing a sequential experiment to be balanced. In thi...
Lin, Tsung-I Wang, Wan-Lun
Published in
Statistical methods in medical research
Multivariate nonlinear mixed-effects models (MNLMMs) have become a promising tool for analyzing multi-outcome longitudinal data following nonlinear trajectory patterns. However, such a classical analysis can be challenging due to censorship induced by detection limits of the quantification assay or non-response occurring when participants missed sc...