Tsai, Ming-Tien
Published in
Mathematical Methods of Statistics

For a multinormal distribution with a p-dimensional mean vector θ and an arbitrary unknown dispersion matrix Σ, Rao ([8], [9]) proposed two tests for the problem of testing H0: θ1 = 0, θ2 = 0, Σ unspecified, versus H1: θ1 ≠ 0, θ2 = 0, Σ unspecified. These tests are known as Rao’s W-test and Rao’s U-test, respectively. In this paper, it is shown tha...

Khardani, S.
Published in
Mathematical Methods of Statistics

In this paper we consider the problem of non-parametric relative regression for twice censored data. We introduce and study a new estimate of the regression function when it is appropriate to assess performance in terms of mean squared relative error of prediction. We establish the uniform consistency with rate over a compact set and asymptotic nor...

Overgaard, M.
Published in
Mathematical Methods of Statistics

The consistency of the Aalen—Johansen-derived estimator of state occupation probabilities in non-Markov multi-state settings is studied and established via a new route. This new route is based on interval functions and relies on a close connection between additive and multiplicative transforms of interval functions, which is established. Under cert...

Eberl, A. Klar, B.
Published in
Mathematical Methods of Statistics

Van Zwet (1964) [16] introduced the convex transformation order between two distribution functions F and G, defined by F ≤cG if G−1 ∘ F is convex. A distribution which precedes G in this order should be seen as less right-skewed than G. Consequently, if F ≤cG, any reasonable measure of skewness should be smaller for F than for G. This property is t...

Pinelis, I.
Published in
Mathematical Methods of Statistics

It is shown that for any correlation-parametrized model of dependence and any given significance level α ∈ (0, 1), there is an asymptotically optimal transform of Pearson’s correlation statistic R, for which the generally leading error term for the normal approximation vanishes for all values ρ ∈ (−1, 1) of the correlation coefficient. This general...

Rimal, R. Pensky, M.
Published in
Mathematical Methods of Statistics

The present paper studies density deconvolution in the presence of small Berkson errors, in particular, when the variances of the errors tend to zero as the sample size grows. It is known that when the Berkson errors are present, in some cases, the unknown density estimator can be obtained by simple averaging without using kernels. However, this ma...

Autin, F. Clausel, M. Freyermuth, J.-M. Marteau, C.
Published in
Mathematical Methods of Statistics

This paper extends the successful maxiset paradigm from function estimation to signal detection in inverse problems. In this context, the maxisets do not have the same shape compared to the classical estimation framework. Nevertheless, we introduce a robust version of these maxisets allowing to exhibit tail conditions on the signals of interest. Un...

Bouzebda, S. Nemouchi, B.
Published in
Mathematical Methods of Statistics

In this paper we are concerned with the weak convergence to Gaussian processes of conditional empirical processes and conditional U-processes from stationary β-mixing sequences indexed by classes of functions satisfying some entropy conditions. We obtain uniform central limit theorems for conditional empirical processes and conditional U-processes ...

Caron, E. Dede, S.
Published in
Mathematical Methods of Statistics

We consider the usual linear regression model in the case where the error process is assumed strictly stationary.We use a result of Hannan, who proved a Central Limit Theorem for the usual least squares estimator under general conditions on the design and the error process.We show that for a large class of designs, the asymptotic covariance matrix ...

Golubev, G. Safarian, M.
Published in
Mathematical Methods of Statistics

Let X1, X2,... be independent random variables observed sequentially and such that X1,..., Xθ−1 have a common probability density p0, while Xθ, Xθ+1,... are all distributed according to p1 ≠ p0. It is assumed that p0 and p1 are known, but the time change θ ∈ ℤ+ is unknown and the goal is to construct a stopping time τ that detects the change-point ...